3 research outputs found

    Make a PI controller on an 8-bit micro

    Get PDF
    "This article shows you how to implement a classical PI (proportional-integral) controller on a simple 8-bit microcontroller. To implement the PI controller, we developed specific libraries that make it possible for the microcontroller to perform arithmetic operations with 16- and 32-bit precision. Such resolution is necessary to reduce the steady-state error of the system being controlled. One advantage of this configuration is that it can be programmed into microcontrollers with less than 128 bytes of RAM and 4KB of ROM on chip. This design has been used to control a direct current (DC) gear motor but can be used to control other kind of actuators as well. Experimental results show a good performance of the overall embedded system.

    A Practical Score for Prediction of Outcome After Cerebral Venous Thrombosis

    Get PDF
    Background: Most patients with cerebral venous thrombosis (CVT) have independent survival in the short term. However, identification of high-risk individuals with an unfavorable outcome is a challenging task. We aimed to develop a CVT grading scale (CVT-GS) to aid in the short-term clinical decision-making.Methods: We included 467 consecutive patients with CVT who were hospitalized from 1981 to 2015 in two third-level referral hospitals. Factors associated with 30-day mortality were selected with bivariate analyses to integrate a Cox proportional-hazards model to determine components of the final scoring. After the scale was configured, the prognostic performance was tested for prediction of short-term death or moderately impaired to death [modified Rankin scale (mRS) > 2]. CVT-GS was categorized as mild, moderate or severe for the prediction of 30-day fatality rate and a probability of mRS > 2.Results: The 30-day case fatality rate was 9.0%. The CVT-GS (0–13 points; more points predicting poorer outcomes) was composed of parenchymal lesion size > 6 cm (3 points), bilateral Babinski signs (3 points), male sex (2 points), parenchymal hemorrhage (2 points), and level of consciousness (coma: 3 points, stupor: 2, somnolence: 1, and alert: 0). CVT was categorized as mild (0–2 points, 0.4% fatality rate), moderate (3–7 points, 9.9% fatality rate), or severe (8–13 points, 61.4% fatality rate). The CVT-GS had an accuracy of 91.6% for the prediction of 30-day mortality and 85.3% for mRS > 2.Conclusions: CVT-GS is a practical clinical tool for prediction of outcome after CVT. This score may aid in clinical decision-making and could serve to stratify patients enrolled in clinical trials

    Chaos evidence in catecholamine secretion at chromaffin cells

    No full text
    "Chromaffin cells secrete catecholamine molecules via exocytosis process. Each exocytotic event is characterized by a current spike, which corresponds to the amount of released catecholamine from secretory vesicles after fusing to plasma membrane. The current spike might be measured by the oxidation of catecholamine molecules and can be experimentally detected through amperometry technique. In this contribution, the secretion of catecholamine, namely adrenaline, of a set of bovine chromaffin cells is measured individually at each single cell. The aim is to study quantitative results of chaotic behavior in catecholamine secretion. For analysis, time series were obtained from amperometric measurements of each single chromaffin cell. Three analysis techniques were exploited: (i) A low-order attractor was generated by means of phase space reconstruction, Average Mutual Information (AMI) and False Nearest Neighbors (FNN) were used to compute embedding lag and embedding dimension, respectively. (ii) The properties of power spectrum density of time series were studied by Fast Fourier Transform (FFT) looking for possible dominant frequencies in power spectrum. (iii) Maximun Lyapunov Exponent (MLE) analysis was done to study the divergence of trajectories of the time series. Nevertheless, in order to dismiss the possibility of positiveness of MLE are due to the inherent noise in experiments, seven surrogate data sets computed using the Amplitude Adjusted Fourier Transform (AAFT) algorithm was computed. The phase space reconstruction showed that, in all cases, the trajectories lie in an embedding subspace suggesting oscillatory nature. The FFT analysis showed high dispersion of the power spectrum without any predominant frequency range. MLE analysis showed that the MLE values are positive for a given orbit time and a defined range of maximum scale values. Moreover, the trajectory of the MLE evolution of all the surrogate data are asymptotic and hold positive along the maximum scale range. These findings are preliminary evidence on detecting chaotic behavior in catecholamine secretion and, in general, their provide a first step towards a deeply understanding of nonlinear behavior of protein releasing dynamics.
    corecore