24 research outputs found

    Differential Gene Expression by RamA in Ciprofloxacin-Resistant Salmonella Typhimurium

    Get PDF
    Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM). The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways

    Enantioselective Rh-catalyzed hydrogenation of N-formyl dehydroamino esters with monodentate phosphoramidite ligands

    Get PDF
    Enantioselectivities up to > 99% ee were achieved in the rhodium-catalyzed asymmetric hydrogenation of N-formyl dehydroamino esters using morrodentate phosphoramidites as chiral ligands. The substrates were synthesized by condensation of methyl isocyanoacetate with a range of aldehydes and with cyclohexanone. A highly convenient multigram scale one step synthesis of methyl 2-(formamido)acrylate was developed. This compound was used in the synthesis of methyl 2-(formamido)cinnamate via a solvent free Heck reaction. Moreover, full conversion and > 99% ee were obtained in 1 h in the hydrogenation of methyl 2-(formamido)acrylate with 0.2 mol % catalyst and 2 bar hydrogen pressure. The versatility of the formyl protection was established by its removal under mild conditions
    corecore