23 research outputs found

    Groups 5 and 6 Terminal Hydrazido(2−) Complexes: N_β Substituent Effects on Ligand-to-Metal Charge-Transfer Energies and Oxidation States

    Get PDF
    Brightly colored terminal hydrazido(2−) (dme)MCl_3(NNR_2) (dme = 1,2-dimethoxyethane; M = Nb, Ta; R = alkyl, aryl) or (MeCN)WCl_4(NNR_2) complexes have been synthesized and characterized. Perturbing the electronic environment of the β (NR_2) nitrogen affects the energy of the lowest-energy charge-transfer (CT) transition in these complexes. For group 5 complexes, increasing the energy of the N_β lone pair decreases the ligand-to-metal CT (LMCT) energy, except for electron-rich niobium dialkylhydrazides, which pyramidalize N_β in order to reduce the overlap between the Nb═Nα π bond and the Nβ lone pair. For W complexes, increasing the energy of N_β eventually leads to reduction from formally [W^(VI)≡N–NR_2] with a hydrazido(2−) ligand to [W^(IV)═N═NR_2] with a neutral 1,1-diazene ligand. The photophysical properties of these complexes highlight the potential redox noninnocence of hydrazido ligands, which could lead to ligand- and/or metal-based redox chemistry in early transition metal derivatives

    Iodinated Aluminum(III) Corroles with Long-Lived Triplet Excited States

    Get PDF
    The first reported iodination of a corrole leads to selective functionalization of the four C–H bonds on one pole of the macrocycle. An aluminum(III) complex of the tetraiodinated corrole, which exhibits red fluorescence, possesses a long-lived triplet excited state

    Tris(hydroxypropyl)phosphine Oxide: A Chiral Three-Dimensional Material with Nonlinear Optical Properties

    Get PDF
    The achiral C_(3v) organic phosphine tris(hydroxypropyl)phosphine oxide (1) crystallizes in the unusual chiral hexagonal space group P6_3. The structure is highly ordered because each phosphine oxide moiety forms three hydrogen bonds with adjacent hydroxy groups from three different molecules. The properties of the crystals and the presence of hydrogen bonding interactions were investigated using single crystal Raman spectroscopy. The crystals show nonlinear optical properties and are capable of efficient second harmonic generation

    Drug-Loaded, Bivalent-Bottle-Brush Polymers by Graft-through ROMP

    Get PDF
    Graft through ring-opening metathesis polymerization (ROMP) using ruthenium N heterocyclic carbene catalysts has enabled the synthesis of bottle-brush polymers with unprecedented ease and control Here we report the first bivalent-brush polymers, these materials were prepared by graft through ROMP of drug-loaded poly(ethylene glycol) (PEG) based macromonomers (MMs) Anticancer drugs doxorubicin (DOX) and camptothecin (CT) were attached to a norbornene alkyne-PEG MM via a photocleavable linker ROMP of either or both drug loaded MMs generated brush homo and copolymers with low polydispersities and defined molecular weights. Release of free DOX and CT from these materials was initiated by exposure to 365 nm light All of the CT and DOX polymers were at least 10 fold more toxic to human cancer cells after photoinitiated drug release while a copolymer carrying both CT and DOX displayed 30-fold increased toxicity upon irradiation Graft through ROMP of drug loaded macromonomers provides a general method for the systematic study of structure function relationships for stimuli responsive polymers in biological systems

    Structural Control of ^1A_(2u)-to-^3A_(2u) Intersystem Crossing in Diplatinum(II,II) Complexes

    Get PDF
    Analysis of variable-temperature fluorescence quantum yield and lifetime data for per(difluoroboro)tetrakis(pyrophosphito)diplatinate(II) ([Pt_2(μ-P_2O_5(BF_2)_(2)4)]^(4–), abbreviated Pt(pop-BF_2)), yields a radiative decay rate (k_r = 1.7 × 10^8 s^(–1)) an order of magnitude greater than that of the parent complex, Pt(pop). Its temperature-independent and activated intersystem crossing (ISC) pathways are at least 18 and 142 times slower than those of Pt(pop) [ISC activation energies: 2230 cm^(–1) for Pt(pop-BF_2); 1190 cm^(–1) for Pt(pop)]. The slowdown in the temperature-independent ISC channel is attributed to two factors: (1) reduced spin–orbit coupling between the ^1A_(2u) state and the mediating triplet(s), owing to increases of LMCT energies relative to the excited singlet; and (2) diminished access to solvent, which for Pt(pop) facilitates dissipation of the excess energy into solvent vibrational modes. The dramatic increase in E_a is attributed to increased P-O-P framework rigidity, which impedes symmetry-lowering distortions, in particular asymmetric vibrations in the Pt_2(P-O-P)_4 core that would allow direct ^1A_(2u)–^3A_(2u) spin–orbit coupling

    Singlet and Triplet Excitation Management in a Bichromophoric Near-Infrared-Phosphorescent BODIPY-Benzoporphyrin Platinum Complex

    Get PDF
    Multichromophoric arrays provide one strategy for assembling molecules with intense absorptions across the visible spectrum but are generally focused on systems that efficiently produce and manipulate singlet excitations and therefore are burdened by the restrictions of (a) unidirectional energy transfer and (b) limited tunability of the lowest molecular excited state. In contrast, we present here a multichromophoric array based on four boron dipyrrins (BODIPY) bound to a platinum benzoporphyrin scaffold that exhibits intense panchromatic absorption and efficiently generates triplets. The spectral complementarity of the BODIPY and porphryin units allows the direct observation of fast bidirectional singlet and triplet energy transfer processes (k_(ST)(^1BDP→^1Por) = 7.8 × 10^(11) s^(−1), k_(TT)(^3Por→^3BDP) = 1.0 × 10^(10) s^(−1), k_(TT)(^3BDP→^3Por) = 1.6 × 10^(10) s^(−1)), leading to a long-lived equilibrated [^3BDP][Por]⇔[BDP][^3Por] state. This equilibrated state contains approximately isoenergetic porphyrin and BODIPY triplets and exhibits efficient near-infrared phosphorescence (λ_(em) = 772 nm, Φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core−shell chromophores by tunable redistribution of energy from the core back onto the antennae
    corecore