7 research outputs found

    Behavior of Poly electrolyte Gels in Concentrated Solutions of Highly Soluble Salts

    Get PDF
    Ionic hydrogels are an abundant class of materials with applications ranging from drug delivery devices to high performance concrete to baby diapers. A more thorough understanding of interactions between poly electrolyte networks and ionic solutes is critical as these materials are further tailored for performance applications in highly targeted ionic environments. In this work, we seek to develop structure-property relationships between polyelectrolyte gels and environments containing high concentrations of multivalent ions. Specifically, this work seeks to elucidate the causes behind differences in hydrogel response to divalent ions of main group metals versus transition metals. PANa-co-PAM hydrogels containing low and high fractions of ionic groups are investigated in solutions of DI water, NaCl, CaCl2, and CuSO4 at concentrations ranging from 5 to 100 mM in order to understand 1) the transient or permanent nature of crosslinks produced in these networks by divalent counter-ions, 2) the role of polymer ionic content in these interactions, and 3) how these interactions scale with salt concentration. Gravimetric swelling and mechanical compression testing are employed to characterize water and salt-swollen hydrogels in order to develop guiding principles to control and manipulate material properties through polymer-counter-ion interactions. The work presented here confirms the formation of permanent crosslinks by transition metal ions, offers explanation for the behavioral discrepancy observed between ionic hydrogels and main group versus transition metal ions, and illustrates how such hydrogel properties scale with counter-ion concentration

    A Shift from Oral to Blood pH Is a Stimulus for Adaptive Gene Expression of Streptococcus gordonii CH1 and Induces Protection against Oxidative Stress and Enhanced Bacterial Growth by Expression of msrA

    No full text
    Viridans group streptococci (VS) from the oral cavity entering the bloodstream may initiate infective endocarditis (IE). We aimed to identify genes expressed in response to a pH increase from slightly acidic (pH 6.2) to neutral (pH 7.3) as encountered by VS entering the bloodstream from the oral cavity. Using a recently developed promoter-screening vector, we isolated five promoter fragments from the genomic DNA of Streptococcus gordonii CH1 responding to this stimulus. No common regulatory sequences were identified in these promoter fragments that could account for the coordinate expression of the corresponding genes. One of the isolated fragments contained the promoter region and 5′ end of a gene highly homologous to the methionine sulfoxide reductase gene (msrA) of various bacterial and eukaryotic species. This gene has been found to be activated in S. gordonii strain V288 in a rabbit model of IE (A. O. Kiliç, M. C. Herzberg, M. W. Meyer, X. Zhao, and L. Tao, Plasmid 42:67–72, 1999). We isolated and characterized the msrA gene of S. gordonii CH1 and constructed a chromosomal insertion mutant. This mutant was more sensitive to hydrogen peroxide, suggesting a role for the streptococcal MsrA in protecting against oxidative stress. Moreover, MsrA appeared to be important for the growth of S. gordonii CH1 under aerobic and anaerobic conditions. Both these properties of MsrA may contribute to the ability of S. gordonii to cause IE

    Altered Gene Expression in Staphylococcus aureus upon Interaction with Human Endothelial Cells

    Get PDF
    Staphylococcus aureus is isolated from a substantial number of patients with infective endocarditis who are not known to have predisposing heart abnormalities. It has been suggested that the infection is initiated by the direct binding of S. aureus to human vascular endothelium. To determine the mutual response of the endothelial cells and the bacteria, we studied the interaction between S. aureus and human vascular endothelium. Scanning electron microscopic analyses showed that binding of S. aureus to human umbilical vein endothelial cells (HUVEC) mainly occurred via thread-like protrusions extending from the cell surface. Bound bacteria appeared to be internalized via retraction of the protrusions into newly formed invaginations of the endothelial cell surface. The growth phase of S. aureus had a major impact on the interaction with HUVEC. Logarithmically growing bacteria showed increased binding to, and were more readily internalized by, HUVEC compared to stationary-phase bacteria. To assess the bacterial response to the cellular environment, an expression library of S. aureus was used to identify genes whose expression was induced after 4 h of exposure to HUVEC. The identified genes could be divided into different categories based on the functions of the encoded proteins (transport, catabolism, biosynthesis, and DNA repair). Further analyses of five of the S. aureus transposon clones showed that HUVEC as well as human serum are stimuli for triggering gene expression in S. aureus
    corecore