2 research outputs found

    Bionanocellulose/Poly(Vinyl Alcohol) Composites Produced by In-Situ Method and Ex-Situ/Impregnation or Sterilization Methods

    No full text
    The purpose of the work was to obtain composites based on bionanocellulose (BNC) and poly(vinyl alcohol) (PVA) for specific biomedical and cosmetic applications and to determine how the method and conditions of their preparation affect their utility properties. Three different ways of manufacturing these composites (in-situ method and ex-situ methods combined with sterilization or impregnation) were presented. The structure and morphology of BNC/PVA composites were studied by ATR-FTIR spectroscopy and scanning microscopy (SEM, AFM). Surface properties were tested by contact angle measurements. The degree of crystallinity of the BNC fibrils was determined by means of the XRD method. The mechanical properties of the BNC/PVA films were examined using tensile tests and via the determination of their bursting strength. The water uptake of the obtained materials was determined through the gravimetric method. The results showed that PVA added to the nutrient medium caused an increase in biosynthesis yield. Moreover, an increase in base weight was observed in composites of all types due to the presence of PVA. The ex-situ composites revealed excellent water absorption capacity. The in-situ composites appeared to be the most durable and elastic materials

    Photochemical and Thermal Stability of Bionanocellulose/Poly(Vinyl Alcohol) Blends

    No full text
    This research focuses on novel ecological materials for biomedical and cosmetic applications. The cellulose of bacterial origin is well suited for such purposes, but its functional properties must be modified. In this work, the blends of bionanocellulose and poly(vinyl alcohol), BNC/PVA, were prepared based on in situ and ex situ methodology combined with impregnation and sterilization, using different concentrations of PVA. The main purpose of this work was to check the influence of UV radiation and high temperature, which can be sterilizing factors, on the properties of these mixtures. It was found that the crystallinity degree increases in UV-irradiated samples due to the photodegradation of the amorphous phase. This changes the mechanical properties: the breaking stress and Young’s modulus decreased, while the strain at break increased in most UV-irradiated samples. The surface morphology, which we observed by using AFM, did not change significantly after exposure, but the roughness and surface free energy changed irregularly in samples obtained by different methods. However, the effects induced by UV-irradiation were not so crucial as to deteriorate the materials’ properties designed for medical applications. Thermogravimetric analysis exhibited good thermal stability for all samples up to at least 200 °C, which allows for the prediction of these systems also in industrial sectors
    corecore