595 research outputs found

    Ward identities for the Anderson impurity model: derivation via functional methods and the exact renormalization group

    Full text link
    Using functional methods and the exact renormalization group we derive Ward identities for the Anderson impurity model. In particular, we present a non-perturbative proof of the Yamada-Yosida identities relating certain coefficients in the low-energy expansion of the self-energy to thermodynamic particle number and spin susceptibilities of the impurity. Our proof underlines the relation of the Yamada-Yosida identities to the U(1) x U(1) symmetry associated with particle number and spin conservation in a magnetic field.Comment: 8 pages, corrected statements about infintite flatband limi

    Spectral function of the Anderson impurity model at finite temperatures

    Full text link
    Using the functional renormalization group (FRG) and the numerical renormalization group (NRG), we calculate the spectral function of the Anderson impurity model at zero and finite temperatures. In our FRG scheme spin fluctuations are treated non-perturbatively via a suitable Hubbard-Stratonovich field, but vertex corrections are neglected. A comparison with our highly accurate NRG results shows that this FRG scheme gives a quantitatively good description of the spectral line-shape at zero and finite temperatures both in the weak and strong coupling regimes, although at zero temperature the FRG is not able to reproduce the known exponential narrowing of the Kondo resonance at strong coupling.Comment: 6 pages, 3 figures; new references adde

    Magnetic Skyrmion Lattice by Fourier Transform Method

    Get PDF
    We demonstrate a fast numerical method of theoretical studies of skyrmion lattice or spiral order in magnetic materials with Dzyaloshinsky-Moriya interaction. The method is based on the Fourier expansion of the magnetization combined with a minimization of the free energy functional of the magnetic material in Fourier space, yielding the optimal configuration of the system for any given set of parameters. We employ a Lagrange multiplier technique in order to satisfy micromagnetic constraints. We apply this method to a system that exhibits, depending on the parameter choice, ferromagnetic, skyrmion lattice, or spiral (helical) order. Known critical fields corresponding to the helical-skyrmion as well as the skyrmion-ferromagnet phase transitions are reproduced with high precision. Using this numerical method we predict new types of excited (metastable) states of the skyrmion lattice, which may be stabilized by coupling the skyrmion lattice with a superconducting vortex lattice. The method can be readily adapted to other micromagnetic systems.Comment: 12 pages, 8 figure

    Quantum criticality of dipolar spin chains

    Full text link
    We show that a chain of Heisenberg spins interacting with long-range dipolar forces in a magnetic field h perpendicular to the chain exhibits a quantum critical point belonging to the two-dimensional Ising universality class. Within linear spin-wave theory the magnon dispersion for small momenta k is [Delta^2 + v_k^2 k^2]^{1/2}, where Delta^2 \propto |h - h_c| and v_k^2 \propto |ln k|. For fields close to h_c linear spin-wave theory breaks down and we investigate the system using density-matrix and functional renormalization group methods. The Ginzburg regime where non-Gaussian fluctuations are important is found to be rather narrow on the ordered side of the transition, and very broad on the disordered side.Comment: 6 pages, 5 figure

    Charge Disproportionation, Mixed Valence, and Janus Effect in Multiorbital Systems: A Tale of Two Insulators

    Get PDF
    Multiorbital Hubbard models host strongly correlated "Hund's metals" even for interactions much stronger than the bandwidth. We characterize this interaction-resilient metal as a mixed-valence state. In particular, it can be pictured as a bridge between two strongly correlated insulators: a high-spin Mott insulator and a charge-disproportionated insulator which is stabilized by a very large Hund's coupling. This picture is confirmed comparing models with negative and positive Hund's coupling for different fillings. Our results provide a characterization of the Hund's metal state and connect its presence with charge disproportionation, which has indeed been observed in chromates and proposed to play a role in iron-based superconductors

    Aspirin inhibits androgen response to chorionic gonadotropin in humans.

    Get PDF

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.
    corecore