14 research outputs found

    A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure

    Get PDF
    Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P <5 x 10(-8), false discovery rate <0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.Peer reviewe

    HOUSEHOLD COST FUNCTIONS AND THE VALUE OF HOME PRODUCTION IN ONE- AND TWO-EARNER FAMILIES

    No full text
    In a household, female labor force participation has important consequences for the household production processes. As a result of the decision to participate more money is coming into the household, but less time is available to spend on housework and leisure activities. The objective of this paper is to estimate household cost functions and the shodaw price assigned by households to housework. We assume that these concepts are significantly different in families where both spouses are participating in the labor force, and those where only one of them is participating. Hence they depend on the discrete choice of the household whether the female will participate or not. We describe the behavior of the household by means of two distinct r6gimes and an endogenous switchig equation explaning the participation decision. Some of the basic determinants of the participation decision are: number of children at home, the age of the female and the income opportunities for the female. The two rftimes are both described by the simultaneous equation model explaning the labor supply, the hours spent on household work by both partners and the shadow price assigned to housework. The model is estimated on a large data base containing 4000 households, collected in the Netherlands in 1983

    Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries

    Get PDF
    The authors have read the journal's policy and the authors of this manuscript have the following competing interests: Bruce M. Psaty (BMP) serves on the DSMB of a clinical trial funded by Zoll Lifecor and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. Barbara V. Howard (BVH) has a contract from National Heart, Lung, and Blood Institute (NHLBI). Brenda W.J.H. Penninx (BWJHP) has received research funding (non-related to the work reported here) from Jansen Research and Boehringer Ingelheim. Mike A. Nalls (MAN) is supported by a consulting contract between Data Tecnica International LLC and the National Institute on Aging (NIA), National Institutes of Health (NIH), Bethesda, MD, USA. MAN also consults for Illumina Inc., the Michael J. Fox Foundation, and the University of California Healthcare. MAN also has commercial affiliation with Data Tecnica International, Glen Echo, MD, USA. Mark J. Caulfield (MJC) has commercial affiliation and is Chief Scientist for Genomics England, a UK government company. OHF is supported by grants from Metagenics (on women's health and epigenetics) and from Nestlé (on child health). Peter S. Sever (PSS) is financial supported from several pharmaceutical companies which manufacture either blood pressure lowering or lipid lowering agents, or both, and consultancy fees. Paul W. Franks (PWF) has been a paid consultant in the design of a personalized nutrition trial (PREDICT) as part of a private-public partnership at Kings College London, UK, and has received research support from several pharmaceutical companies as part of European Union Innovative Medicines Initiative (IMI) projects. Terho Lehtimäki (TL) is employed by Fimlab Ltd. Ozren Polašek (OP) is employed by Gen‐info Ltd. There are no patents, products in development, or marked products to declare. All the other authors have declared no competing interests exist. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.International audienceHeavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension

    Identification of four independent LD blocks in the 8p23.1 region <i>(~3</i>.<i>3 MBs</i>).

    No full text
    <p>Identification of four independent LD blocks in the 8p23.1 region <i>(~3</i>.<i>3 MBs</i>).</p

    Novel SNVs/Genes associated with BP traits in Multi-ancestry meta-analysis in combined Stage 1 and Stage 2.

    No full text
    <p>Novel SNVs/Genes associated with BP traits in Multi-ancestry meta-analysis in combined Stage 1 and Stage 2.</p
    corecore