16 research outputs found
CONTENT ALERTS
This article cites 40 articles, 17 of which can be accessed fre
Alkoxyalkyl Esters of (S)-9-[3-Hydroxy-2-(Phosphonomethoxy)Propyl]Adenine Are Potent Inhibitors of the Replication of Wild-Type and Drug-Resistant Human Immunodeficiency Virus Type 1 In Vitro
(S)-9-[3-Hydroxy-2-(phosphonomethoxy)propyl]adenine [(S)-HPMPA], is an effective broad-spectrum antiviral against many DNA viruses but has been reported to be inactive against human immunodeficiency virus (HIV). We synthesized several alkoxyalkyl esters of (S)-HPMPA and now report that hexadecyloxypropyl-(S)-HPMPA [HDP-(S)-HPMPA] and octadecyloxyethyl-(S)-HPMPA [ODE-(S)-HPMPA]had 50% effective concentrations of 0.4 to 7.0 nanomolar and were nearly fully active against HIV variants having reverse transcriptase mutations M184V and K103N and against a zidovudine-resistant variant with mutations D67N, K70R, T215Y, and K219Q. Resistance to HDP-(S)-HPMPA and ODE-(S)-HPMPA was noted for a mutant with mutation K65R. HDP-(S)-HPMPA is also active against herpes simplex virus type 1, human cytomegalovirus, hepatitis B virus, adenoviruses, and orthopoxviruses and is worthy of further evaluation as a possibly therapy for HIV infection
Recommended from our members
Octadecyloxyethyl benzyl tenofovir: A novel tenofovir diester provides sustained intracellular levels of tenofovir diphosphate
Pre-exposure prophylaxis (PrEP) with topically or systemically administered antiretroviral agents can prevent acquisition of human immunodeficiency virus type 1 (HIV-1) infection. However, in clinical trials using tenofovir-containing agents, HIV-1 acquisition is reduced but not eliminated. Incomplete adherence remains the major contributor to failure. Sustained release or long-acting antiretroviral agents may provide better HIV-1 protection by reducing the clinical impact of incomplete adherence. To reduce dosing frequency, we synthesized a novel tenofovir prodrug, octadecyloxyethyl benzyl tenofovir (ODE-Bn-TFV), that is designed to release TFV slowly in tissues, and showed potent anti-HIV activity in vitro (EC50 = 1.7 nM). In cells exposed to 14C labeled TFV, ODE-Bn-TFV or the quickly activated monoester ODE-TFV, rapid cellular uptake for both lipophilic analogs was noted, achieving 50-fold higher levels than unmodified TFV after 48 h. Following exposure to ODE-[8-14C]TFV, the intracellular diphosphate levels were approximately four-fold higher than with ODE-Bn-TFV. However, intracellular TFVpp drug levels fell rapidly yielding a half-life of about two days. TFVpp levels in ODE-Bn-TFV treated cells decreased much more slowly and reached half-maximal levels in about seven days. These results suggest early accumulation of ODE-Bn-TFV followed by sustained intracellular release following cleavage of the ester bonds linking the ODE and benzyl moieties to the active molecular precursor, thereby potentially allowing for less frequent administration than with more rapidly activated forms of tenofovir
Alkoxyalkyl Esters of Cidofovir and Cyclic Cidofovir Exhibit Multiple-Log Enhancement of Antiviral Activity against Cytomegalovirus and Herpesvirus Replication In Vitro
The incidence of cytomegalovirus (CMV) retinitis is declining in AIDS patients but remains a significant clinical problem in patients with organ transplants and bone marrow transplants. Prophylaxis with ganciclovir (GCV) or valganciclovir reduces the incidence of CMV disease but may lead to the emergence of drug-resistant virus with mutations in the UL97 or UL54 gene. It would be useful to have other types of oral therapy for CMV disease. We synthesized hexadecyloxypropyl and octadecyloxyethyl derivatives of cyclic cidofovir (cCDV) and cidofovir (CDV) and found that these novel analogs had 2.5- to 4-log increases in antiviral activity against CMV compared to the activities of unmodified CDV and cCDV. Multiple-log increases in activity were noted against laboratory CMV strains and various CMV clinical isolates including GCV-resistant strains with mutations in the UL97 and UL54 genes. Preliminary cell studies suggest that the increase in antiviral activity may be partially explained by a much greater cell penetration of the novel analogs. 1-O-Hexadecyloxypropyl-CDV, 1-O-octadecyloxyethyl-CDV, and their corresponding cCDV analogs are worthy of further preclinical evaluation for treatment and prevention of CMV and herpes simplex virus infections in humans
Antiviral Activities of Novel 5-Phosphono-Pent-2-en-1-yl Nucleosides and Their Alkoxyalkyl Phosphonoesters
Three acyclic nucleoside phosphonates are currently approved for clinical use against infections caused by cytomegalovirus (Vistide), hepatitis B virus (Hepsera), and human immunodeficiency virus type 1 (Viread). This important antiviral class inhibits viral polymerases after cellular uptake and conversion to their diphosphates, bypassing the first phosphorylation, which is required for conventional nucleoside antivirals. Small chemical alterations in the acyclic side chain lead to marked differences in antiviral activity and the spectrum of activity of acyclic nucleoside phosphonates against various classes of viral agents. We synthesized a new class of acyclic nucleoside phosphonates based on a 5-phosphono-pent-2-en-1-yl base motif in which the oxygen heteroatom usually present in acyclic nucleoside phosphonates has been replaced with a double bond. Since the intrinsic phosphonate moiety leads to low oral bioavailability and impaired cellular penetration, we also prepared the hexadecyloxypropyl esters of the 5-phosphono-pent-2-en-1-yl nucleosides. Our earlier work showed that this markedly increases antiviral activity and oral bioavailability. Although the 5-phosphono-pent-2-en-1-yl nucleosides themselves were not active, the hexadecyloxypropyl esters were active against DNA viruses and hepatitis B virus, in vitro. Notably, the hexadecyloxypropyl ester of 9-(5-phosphono-pent-2-en-1-yl)-adenine was active against hepatitis B virus mutants resistant to lamivudine, emtricitabine, and adefovir
Intraocular Safety and Pharmacokinetics of Hexadecyloxypropyl-Cidofovir (HDP-CDV) as a Long-lasting Intravitreal Antiviral Drug
This study demonstrates HDP-CDV, a transport micelle form for use in a crystalline HDP-cCDV intravitreal delivery system, has a long-lasting, slow-release property that may be directly used in intravitreal therapy for cytomegalovirus retinitis