1,862 research outputs found
Coulomb Excitation of Multi-Phonon Levels of the Giant Dipole Resonance
A closed expression is obtained for the cross-section for Coulomb excitation
of levels of the giant dipole resonance of given angular momentum and phonon
number. Applications are made to the Goldhaber-Teller and Steinwedel-Jensen
descriptions of the resonance, at non-relativistic and relativistic bombarding
energies.Comment: 16 pages, 5 figure
Long-Time Behavior of Velocity Autocorrelation Function for Interacting Particles in a Two-Dimensional Disordered System
The long-time behavior of the velocity autocorrelation function (VACF) is
investigated by the molecular dynamics simulation of a two-dimensional system
which has both a many-body interaction and a random potential. With
strengthening the random potential by increasing the density of impurities, a
crossover behavior of the VACF is observed from a positive tail, which is
proportional to t^{-1}, to a negative tail, proportional to -t^{-2}. The latter
tail exists even when the density of particles is the same order as the density
of impurities. The behavior of the VACF in a nonequilibrium steady state is
also studied. In the linear response regime the behavior is similar to that in
the equilibrium state, whereas it changes drastically in the nonlinear response
regime.Comment: 12 pages, 5 figure
Theory of Second and Higher Order Stochastic Processes
This paper presents a general approach to linear stochastic processes driven
by various random noises. Mathematically, such processes are described by
linear stochastic differential equations of arbitrary order (the simplest
non-trivial example is , where is not a Gaussian white
noise). The stochastic process is discretized into time-steps, all possible
realizations are summed up and the continuum limit is taken. This procedure
often yields closed form formulas for the joint probability distributions.
Completely worked out examples include all Gaussian random forces and a large
class of Markovian (non-Gaussian) forces. This approach is also useful for
deriving Fokker-Planck equations for the probability distribution functions.
This is worked out for Gaussian noises and for the Markovian dichotomous noise.Comment: 35 pages, PlainTex, accepted for publication in Phys Rev. E
The Semiclassical Coulomb Interaction
The semiclassical Coulomb excitation interaction is at times expressed in the
Lorentz gauge in terms of the electromagnetic fields and a contribution from
the scalar electric potential. We point out that the potential term can make
spurious contributions to excitation cross sections, especially when the the
decay of excited states is taken into account. We show that, through an
appropriate gauge transformation, the excitation interaction can be expressed
in terms of the electromagnetic fields alone.Comment: 12 pages. Phys. Rev. C, Rapid Communication, in pres
Structure Effects on Coulomb Dissociation of B
Coulomb Dissociation provides an alternative method for determining the
radiative capture cross sections at astrophysically relevant low relative
energies. For the breakup of B on Ni, we calculate the total Coulomb
Dissociation cross section and the angular distribution for E1, E2 and M1. Our
calculations are performed first within the standard first order semiclassical
theory of Coulomb Excitation, including the correct three body kinematics, and
later including the projectile-target nuclear interactions.Comment: 6 pages, proceedings from International Workshop on RNB, Puri, India,
January 1998 - to be published in J. Phys.
Effect of boundary conditions on diffusion in two-dimensional granular gases
We analyze the influence of boundary conditions on numerical simulations of
the diffusive properties of a two dimensional granular gas. We show in
particular that periodic boundary conditions introduce unphysical correlations
in time which cause the coefficient of diffusion to be strongly dependent on
the system size. On the other hand, in large enough systems with hard walls at
the boundaries, diffusion is found to be independent of the system size. We
compare the results obtained in this case with Langevin theory for an elastic
gas. Good agreement is found. We then calculate the relaxation time and the
influence of the mass for a particle of radius in a sea of particles of
radius . As granular gases are dissipative, we also study the influence of
an external random force on the diffusion process in a forced dissipative
system. In particular, we analyze differences in the mean square velocity and
displacement between the elastic and inelastic cases.Comment: 15 figures eps figures, include
Liquid-Solid Phase Transition of the System with Two particles in a Rectangular Box
We study the statistical properties of two hard spheres in a two dimensional
rectangular box. In this system, the relation like Van der Waals equation loop
is obtained between the width of the box and the pressure working on side
walls. The auto-correlation function of each particle's position is calculated
numerically. By this calculation near the critical width, the time at which the
correlation become zero gets longer according to the increase of the height of
the box. Moreover, fast and slow relaxation processes like and
relaxations observed in supper cooled liquid are observed when the height of
the box is sufficiently large. These relaxation processes are discussed with
the probability distribution of relative position of two particles.Comment: 6 figure
Intermediate energy Coulomb excitation as a probe of nuclear structure at radioactive beam facilities
The effects of retardation in the Coulomb excitation of radioactive nuclei in
intermediate energy collisions (Elab ~100 MeV/nucleon) are investigated. We
show that the excitation cross sections of low-lying states in 11Be,
{38,40,42}S and {44,46}Ar projectiles incident on gold and lead targets are
modified by as much as 20% due to these effects. The angular distributions of
decaying gamma-rays are also appreciably modified.Comment: 21 pages, 3 figures, Phys. Rev. C, in pres
Internal Anisotropy of Collision Cascades
We investigate the internal anisotropy of collision cascades arising from the
branching structure. We show that the global fractal dimension cannot give an
adequate description of the geometrical structure of cascades because it is
insensitive to the internal anisotropy. In order to give a more elaborate
description we introduce an angular correlation function, which takes into
account the direction of the local growth of the branches of the cascades. It
is demonstrated that the angular correlation function gives a quantitative
description of the directionality and the interrelation of branches. The power
law decay of the angular correlation is evidenced and characterized by an
exponent and an angular correlation length different from the radius of
gyration. It is demonstrated that the overlapping of subcascades has a strong
effect on the angular correlation.Comment: RevteX, 8 pages, 6 .eps figures include
Velocity autocorrelation function of a Brownian particle
In this article, we present molecular dynamics study of the velocity
autocorrelation function (VACF) of a Brownian particle. We compare the results
of the simulation with the exact analytic predictions for a compressible fluid
from [6] and an approximate result combining the predictions from hydrodynamics
at short and long times. The physical quantities which determine the decay were
determined from separate bulk simulations of the Lennard-Jones fluid at the
same thermodynamic state point.We observe that the long-time regime of the VACF
compares well the predictions from the macroscopic hydrodynamics, but the
intermediate decay is sensitive to the viscoelastic nature of the solvent.Comment: 7 pages, 6 figure
- …