40 research outputs found

    Engineering Privacy in Public: Confounding Face Recognition

    Get PDF
    The objective of DARPA’s Human ID at a Distance (HID) program is to develop automated biometric identification technologies to detect, recognize and identify humans at great distances. While nominally intended for security applications, if deployed widely, such technologies could become an enormous privacy threat, making practical the automatic surveillance of individuals on a grand scale. Face recognition, as the HID technology most rapidly approaching maturity, deserves immediate research attention in order to understand its strengths and limitations, with an objective of reliably foiling it when it is used inappropriately. This paper is a status report for a research program designed to achieve this objective within a larger goal of similarly defeating all HID technologies

    Day-ahead Prediction and Shaping of Dynamic Response of Demand at Bulk Supply Points

    No full text
    Email overload is a recent problem that there is increasingly difficulty people have faced to process the large number of emails received daily. Currently this problem becomes more and more serious and it has already affected the normal usage of email as a knowledge management tool. It has been recognized that categorizing emails into meaningful groups can greatly save cognitive load to process emails and thus this is an effective way to manage email overload problem. However, most current approaches still require significant human input when categorizing emails. In this paper we develop an automatic email clustering system, underpinned by a new nonparametric text clustering algorithm. This system does not require any predefined input parameters and can automatically generate meaningful email clusters. Experiments show our new algorithm outperforms existing text clustering algorithms with higher efficiency in terms of computational time and clustering quality measured by different gauges.<br /

    Parallel Unsupervised k-Windows: An Efficient Parallel Clustering Algorithm

    No full text
    Clustering can be defined as the process of partitioning a set of patterns into disjoint and homogeneous meaningful groups (clusters) . There is a growing need for parallel algorithms in this field since databases of huge size are common nowadays. This paper presents a parallel version of a recently proposed algorithm that has the ability to scale very well in parallel environments
    corecore