444 research outputs found

    Discovery of a Galaxy Cluster in the Foreground of the Wide-Separation Quasar Pair UM425

    Full text link
    We report the discovery of a cluster of galaxies in the field of UM425, a pair of quasars separated by 6.5arcsec. Based on this finding, we revisit the long-standing question of whether this quasar pair is a binary quasar or a wide-separation lens. Previous work has shown that both quasars are at z=1.465 and show broad absorption lines. No evidence for a lensing galaxy has been found between the quasars, but there were two hints of a foreground cluster: diffuse X-ray emission observed with Chandra, and an excess of faint galaxies observed with the Hubble Space Telescope. Here we show, via VLT spectroscopy, that there is a spike in the redshift histogram of galaxies at z=0.77. We estimate the chance of finding a random velocity structure of such significance to be about 5%, and thereby interpret the diffuse X-ray emission as originating from z=0.77, rather than the quasar redshift. The mass of the cluster, as estimated from either the velocity dispersion of the z=0.77 galaxies or the X-ray luminosity of the diffuse emission, would be consistent with the theoretical mass required for gravitational lensing. The positional offset between the X-ray centroid and the expected location of the mass centroid is about 40kpc, which is not too different from offsets observed in lower redshift clusters. However, UM425 would be an unusual gravitational lens, by virtue of the absence of a bright primary lensing galaxy. Unless the mass-to-light ratio of the galaxy is at least 80 times larger than usual, the lensing hypothesis requires that the galaxy group or cluster plays a uniquely important role in producing the observed deflections. Based on observations performed with the Very Large Telescope at the European Southern Observatory, Paranal, Chile.Comment: 12 pages, accepted by ApJ 2005, May 1

    Lens or Binary? Chandra Observations of the Wide Separation Broad Absorption Line Quasar Pair UM425

    Full text link
    We have obtained a 110 ksec Chandra ACIS-S exposure of UM425, a pair of QSOs at z=1.47 separated by 6.5 arcsec, which show remarkably similar emission and broad absorption line (BAL) profiles in the optical/UV. Our 5000 count X-ray spectrum of UM425A (the brighter component) is well-fit with a power law (photon spectral index Gamma=2.0) partially covered by a hydrogen column of 3.8x10^22 cm^-2. The underlying power-law slope for this object and for other recent samples of BALQSOs is typical of radio-quiet quasars, lending credence to the hypothesis that BALs exist in every quasar. Assuming the same Gamma for the much fainter image of UM425B, we detect an obscuring column 5 times larger. We search for evidence of an appropriately large lensing mass in our Chandra image and find weak diffuse emission near the quasar pair, with an X-ray flux typical of a group of galaxies at redshift z ~ 0.6. From our analysis of archival HST WFPC2 and NICMOS images, we find no evidence for a luminous lensing galaxy, but note a 3-sigma excess of galaxies in the UM425 field with plausible magnitudes for a z=0.6 galaxy group. However, the associated X-ray emission does not imply sufficient mass to produce the observed image splitting. The lens scenario thus requires a dark (high M/L ratio) lens, or a fortuitous configuration of masses along the line of sight. UM425 may instead be a close binary pair of BALQSOs, which would boost arguments that interactions and mergers increase nuclear activity and outflows.Comment: 13 pages, 9 figures, Accepted for publication in the Astrophysical Journa
    • …
    corecore