47 research outputs found

    Sertraline reduces IL-1β and TNF-α mRNA expression and overcomes their rise induced by seizures in the rat hippocampus.

    No full text
    We recently discovered that the antidepressant sertraline is an effective inhibitor of hippocampus presynaptic Na+ channel permeability in vitro and of tonic-clonic seizures in animals in vivo. Several studies indicate that the pro-inflammatory cytokines in the central nervous system are increased in epilepsy and depression. On the other hand inhibition of Na+ channels has been shown to decrease pro-inflammatory cytokines in microglia. Therefore, the possibility that sertraline could overcome the rise in pro-inflammatory cytokine expression induced by seizures has been investigated. For this purpose, IL-1β and TNF-α mRNA expression was determined by RT-PCR in the hippocampus of rats administered once, or for seven consecutive days with sertraline at a low dose (0.75 mg/kg). The effect of sertraline at doses within the range of 0.75 to 25 mg/kg on the increase in IL-1β and TNF-α mRNA expression accompanying generalized tonic-clonic seizures, and increase in the pro-inflammatory cytokines expression induced by lipopolysaccharide was also investigated. We found that under basal conditions, a single 0.75 mg/kg sertraline dose decreased IL-1β mRNA expression, and also TNF-α expression after repeated doses. The increase in IL-1β and TNF-α expression induced by the convulsive agents and by the inoculation of lipopolysaccharide in the hippocampus was markedly reduced by sertraline also. Present results indicate that a reduction of brain inflammatory processes may contribute to the anti-seizure sertraline action, and that sertraline can be safely and successfully used at low doses to treat depression in epileptic patients

    Fats, Friends or Foes: Investigating the Role of Short- and Medium-Chain Fatty Acids in Alzheimer’s Disease

    No full text
    Characterising Alzheimer’s disease (AD) as a metabolic disorder of the brain is gaining acceptance based on the pathophysiological commonalities between AD and major metabolic disorders. Therefore, metabolic interventions have been explored as a strategy for brain energetic rescue. Amongst these, medium-chain fatty acid (MCFA) supplementations have been reported to rescue the energetic failure in brain cells as well as the cognitive decline in patients. Short-chain fatty acids (SCFA) have also been implicated in AD pathology. Due to the increasing therapeutic interest in metabolic interventions and brain energetic rescue in neurodegenerative disorders, in this review, we first summarise the role of SCFAs and MCFAs in AD. We provide a comparison of the main findings regarding these lipid species in established AD animal models and recently developed human cell-based models of this devastating disorder
    corecore