186 research outputs found
Spectroscopic investigations on PVDF-Fe2O3 nanocomposites
Polyvinylidene fluoride-iron oxide (PVDF-Fe2O3) nanocomposites have been obtained my melt mixing of PVDF with Fe2O3 nanoparticles. The interactions between the polymeric matrix and the nanofiller have been investigated by wide angle X-ray scattering (WAXS), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy, using both red and green excitations (lasers). WAXS, FTIR, and Raman spectra confirm that all samples contain α PVDF as the major crystalline form of the polymeric matrix. Experimental data revealed small changes in the positions of X-ray lines as well as modifications of the width of X-ray lines upon loading by Fe2O3 nanoparticles. FTIR and Raman spectra are dominated by the lines of the polymeric matrix. Within the experimental errors, the positions of Raman lines are not affected by the wavelength of the incoming electromagnetic radiation, although they are sensitive to the strain of the polymeric matrix induced by addition of the nanofiller. The loading of the polymeric matrix with nanoparticles stretches the macromolecular chains, affecting their vibrational spectra (FTIR and Raman). A complex dependence of the positions of some Raman and FTIR lines on the loading with Fe2O3 is reported. The manuscript provides a detailed analysis of the effects of nanofiller on the position of WAXS, FTIR, and Raman lines
The effect of the shear-thickening transition of model colloidal spheres on the sign of N1 and on the radial pressure profile in torsional shear flows
A novel rheometer plate was used to measure radial pressure profiles during cone-and-plate and parallel-plate shearing flows of a concentrated colloidal dispersion of polymethyl methacryalate spheres suspended in dioctyl phthalate. There is a long history of using suspensions of this type as a model rheological system. The measured pressure profile can be used to calculate N1 and N2, and also provides a check on the flow field in the rheometer. At shear rates just below onset of shear thickening, our measurements show that N1 is positive as predicted by Stokesian dynamics simulations of model Brownian hard spheres, but we are unable to determine the sign of N2. After the onset of thickening, we find that in both flow geometries the pressure increases sharply with radial position. This is in striking contrast to the pressure profiles ordinarily observed for viscoelastic liquids with the exception of certain liquid crystal polymers, for which the pressure decreases with radial position. Under these conditions, the apparent values of N1 and N2 are both negative with N2 N1, as predicted by the Stokesian dynamics simulations. However, the flow in the cone-and-plate rheometer may not be viscometric after the onset of shear thickening
On the thermogravimetric analysis of polymers: Polyethylene oxide powder and nanofibers
Thermogravimetric analysis of polyethylene oxide (powder and nanofibers obtained by force spinning water or chloroform solutions of polyethylene oxide) was studied using different theoretical models such as Friedman and Flynn-Wall-Ozawa. A semiempirical approach for estimating the “sigmoid activation energy” from the thermal degradation was suggested and confirmed by the experimental data on PEO powder and nanofibers\u27 mats. The equation allowed for calculating a “sigmoid activation energy” from a single thermogram using a single heating rate without requiring any model for the actual complex set of chemical reactions involved in the thermal degradation process. For PEO (powder and nanofibers obtained from water solutions), the “sigmoid activation energy” increased as the heating rate was increased. The sigmoid activation energy for PEO mats obtained from chloroform solutions exhibited a small decrease as the heating rate was increased. Thermograms\u27 derivatives were fitted to determine the coordinates of the inflection points. The “sigmoid activation energy” was compared to the activation energy determined from the Flynn-Wall-Ozawa model. Similarities between the thermal degradation of polyethylene oxide powder and of the nanofibers obtained from water solutions were discussed. Significant differences between the sigmoid activation energies of the mats obtained from water and chloroform solutions were reported
Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition
As the glass (in molecular fluids\cite{Donth}) or the jamming (in colloids
and grains\cite{LiuNature1998}) transitions are approached, the dynamics slow
down dramatically with no marked structural changes. Dynamical heterogeneity
(DH) plays a crucial role: structural relaxation occurs through correlated
rearrangements of particle ``blobs'' of size
\cite{WeeksScience2000,DauchotPRL2005,Glotzer,Ediger}. On approaching
these transitions, grows in glass-formers\cite{Glotzer,Ediger},
colloids\cite{WeeksScience2000,BerthierScience2005}, and driven granular
materials\cite{KeysNaturePhys2007} alike, strengthening the analogies between
the glass and the jamming transitions. However, little is known yet on the
behavior of DH very close to dynamical arrest. Here, we measure in colloids the
maximum of a ``dynamical susceptibility'', , whose growth is usually
associated to that of \cite{LacevicPRE}. initially increases with
volume fraction , as in\cite{KeysNaturePhys2007}, but strikingly drops
dramatically very close to jamming. We show that this unexpected behavior
results from the competition between the growth of and the reduced
particle displacements associated with rearrangements in very dense
suspensions, unveiling a richer-than-expected scenario.Comment: 1st version originally submitted to Nature Physics. See the Nature
Physics website fro the final, published versio
Well dispersed fractal aggregates as filler in polymer-silica nanocomposites: long range effects in rheology
We are presenting a new method of processing polystyrene-silica
nanocomposites, which results in a very well-defined dispersion of small
primary aggregates (assembly of 15 nanoparticles of 10 nm diameter) in the
matrix. The process is based on a high boiling point solvent, in which the
nanoparticles are well dispersed, and controlled evaporation. The filler's fine
network structure is determined over a wide range of sizes, using a combination
of Small Angle Neutron Scattering (SANS) and Transmission Electronic Microscopy
(TEM). The mechanical response of the nanocomposite material is investigated
both for small (ARES oscillatory shear and Dynamical Mechanical Analysis) and
large deformations (uniaxial traction), as a function of the concentration of
the particles. We can investigate the structure-property correlations for the
two main reinforcement effects: the filler network contribution, and a
filler-polymer matrix effect. Above a silica volume fraction threshold, we see
a divergence of the modulus correlated to the build up of a connected network.
Below the threshold, we obtain a new additional elastic contribution of much
longer terminal time than the matrix. Since aggregates are separated by at
least 60 nm, this new filler-matrix contribution cannot be described solely
with the concept of glassy layer (2nm)
Local influence of boundary conditions on a confined supercooled colloidal liquid
We study confined colloidal suspensions as a model system which approximates
the behavior of confined small molecule glass-formers. Dense colloidal
suspensions become glassier when confined between parallel glass plates. We use
confocal microscopy to study the motion of confined colloidal particles. In
particular, we examine the influence particles stuck to the glass plates have
on nearby free particles. Confinement appears to be the primary influence
slowing free particle motion, and proximity to stuck particles causes a
secondary reduction in the mobility of free particles. Overall, particle
mobility is fairly constant across the width of the sample chamber, but a
strong asymmetry in boundary conditions results in a slight gradient of
particle mobility.Comment: For conference proceedings, "Dynamics in Confinement", Grenoble,
March 201
Temperature- and thickness-dependent elastic moduli of polymer thin films
The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T) and thickness (h)-dependent elastic moduli of polymer thin films Ef(T,h) is developed with verification by the reported experimental data on polystyrene (PS) thin films. For the PS thin films on a passivated substrate, Ef(T,h) decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*), at which thickness Ef(T,h) deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ
The Physics of the Colloidal Glass Transition
As one increases the concentration of a colloidal suspension, the system
exhibits a dramatic increase in viscosity. Structurally, the system resembles a
liquid, yet motions within the suspension are slow enough that it can be
considered essentially frozen. This kinetic arrest is the colloidal glass
transition. For several decades, colloids have served as a valuable model
system for understanding the glass transition in molecular systems. The spatial
and temporal scales involved allow these systems to be studied by a wide
variety of experimental techniques. The focus of this review is the current
state of understanding of the colloidal glass transition. A brief introduction
is given to important experimental techniques used to study the glass
transition in colloids. We describe features of colloidal systems near and in
glassy states, including tremendous increases in viscosity and relaxation
times, dynamical heterogeneity, and ageing, among others. We also compare and
contrast the glass transition in colloids to that in molecular liquids. Other
glassy systems are briefly discussed, as well as recently developed synthesis
techniques that will keep these systems rich with interesting physics for years
to come.Comment: 56 pages, 18 figures, Revie
Unveiling thermal transitions of polymers in subnanometre pores
The thermal transitions of confined polymers are important for the application of polymers in molecular scale devices and advanced nanotechnology. However, thermal transitions of ultrathin polymer assemblies confined in subnanometre spaces are poorly understood. In this study, we show that incorporation of polyethylene glycol (PEG) into nanochannels of porous coordination polymers (PCPs) enabled observation of thermal transitions of the chain assemblies by differential scanning calorimetry. The pore size and surface functionality of PCPs can be tailored to study the transition behaviour of confined polymers. The transition temperature of PEG in PCPs was determined by manipulating the pore size and the pore–polymer interactions. It is also striking that the transition temperature of the confined PEG decreased as the molecular weight of PEG increased
- …