2 research outputs found

    Current practice and future challenges in coastal aquifer management: flux-based and trigger-level approaches with application to an Australian case study

    No full text
    The control of groundwater abstraction from coastal aquifers is typically aimed at minimizing the risk of seawater intrusion, excessive storage depletion and adverse impacts on groundwater-dependent ecosystems. Published approaches to the operational management of groundwater abstraction from regulated coastal aquifers comprise elements of "trigger-level management" and "flux-based management". Trigger-level management relies on measured groundwater levels, groundwater salinities and/or ecosystem health indicators, which are compared to objective values (trigger levels), thereby invoking management responses (e.g. pumping cut-backs). Flux-based management apportions groundwater abstraction rates based on estimates of aquifer recharge and discharge (including environmental water requirements). This paper offers a critical evaluation of coastal aquifer management paradigms using published coastal aquifer case studies combined with a simple evaluation of the Uley South coastal aquifer, South Australia. There is evidence that trigger-level management offers advantages over flux-based approaches through the evaluation of real-time resource conditions and trends, allowing for management responses aimed at protecting against water quality deterioration and excessive storage depletion. However, flux-based approaches are critical for planning purposes, and are required to predict aquifer responses to climatic and pumping stresses. A simplified modelling analysis of the Uley South basin responses to different management strategies demonstrates the advantages of considering a hybrid management approach that includes both trigger-level and flux-based controls. It is recommended that where possible, trigger-level and flux-based approaches be adopted conjunctively to minimize the risk of coastal groundwater degradation and to underpin strategies for future aquifer management and well-field operation
    corecore