8 research outputs found

    Tensile Properties and Microstructures of Laser-Formed Ti-6Al-4V

    Get PDF
    The room temperature tensile properties of Ti-6Al-4V alloy prepared under two different processing routes were evaluated and compared. One group of samples was prepared by conventional casting-forging-rolling into flat plates. The other group was prepared by using Triton\u27s Laser Free-Form Fabrication (LF3)(TM) processes, i.e., a laser was used to melt pre-alloyed powders of the required metallic composition as they were dropped onto a moveable substrate programmed to move in such a manner as to form a solid alloy plate. Five populations of Ti-6Al-4V were evaluated: a standard wrought form, an as-deposited form, a machined as-deposited form, a heat-treated as-deposited form, and a machined as-deposited and heat-treated form. The poorest mechanical properties occurred with the rough surfaces, likely due to existing microcracks and stress concentrations. The LF3 (TM) as-deposited material had mechanical properties comparable to, if not higher than, the mechanical properties of the wrought material. Further evaluations of the laser-formed material for complex spacecraft piece parts were warranted, specifically in regards to improving the surface finish of the materials

    Oxidation and oxygen diffusion in Ti-6al-4V alloy: improving measurements during sims analysis by rotating the sample

    Get PDF
    Titanium alloys are attractive to the industrial world, as they offer the benefits of low density, great corrosion resistance, and relatively good strength, making them viable candidates for a multitude of applications. However, above 500 °C, oxidation and oxygen diffusion in titanium alloys need to be taken into account as they change their microstructure and then their mechanical properties. Oxidations were carried out between 600 and 750 °C on a specific titanium alloy: an a-b annealed Ti-6Al-4V. Oxidation kinetics and oxygen diffusion in the matrix were studied. SIMS analyses were realized on rotating specimens of this two-phase polycrystalline alloy in order to reduce roughness. Composition profiles along the sample thickness were compared to microhardness measurements. SIMS mappings were realized on the smooth slopes of the crater
    corecore