113 research outputs found

    A Faraway Quasar in the Direction of the Highest Energy Auger Event

    Full text link
    The highest energy cosmic ray event reported by the Auger Observatory has an energy of 148 EeV. It does not correlate with any nearby (z<<0.024) object capable of originating such a high energy event. Intrigued by the fact that the highest energy event ever recorded (by the Fly's Eye collaboration) points to a faraway quasar with very high radio luminosity and large Faraday rotation measurement, we have searched for a similar source for the Auger event. We find that the Auger highest energy event points to a quasar with similar characteristics to the one correlated to the Fly's Eye event. We also find the same kind of correlation for one of the highest energy AGASA events. We conclude that so far these types of quasars are the best source candidates for both Auger and Fly's Eye highest energy events. We discuss a few exotic candidates that could reach us from gigaparsec distances.Comment: 13 pages (version to be published in JCAP

    Closing the Window on Strongly Interacting Dark Matter with IceCube

    Full text link
    We use the recent results on dark matter searches of the 22-string IceCube detector to probe the remaining allowed window for strongly interacting dark matter in the mass range 10^4<m_X<10^15 GeV. We calculate the expected signal in the 22-string IceCube detector from the annihilation ofsuch particles captured in the Sun and compare it to the detected background. As a result, the remaining allowed region in the mass versus cross sectionparameter space is ruled out. We also show the expected sensitivity of the complete IceCube detector with 86 strings.Comment: 5 pages, 7 figures. Uppdated figures 2 and 3 (y-axis normalization and label) . Version accepted for publication in PR

    Detection of Exotic Massive Hadrons in Ultra High Energy Cosmic Ray Telescopes

    Full text link
    We investigate the detection of exotic massive strongly interacting hadrons (uhecrons) in ultra high energy cosmic ray telescopes. The conclusion is that experiments such as the Pierre Auger Observatory have the potential to detect these particles. It is shown that uhecron showers have clear distinctive features when compared to proton and nuclear showers. The simulation of uhecron air showers, and its detection and reconstruction by fluorescence telescopes is described. We determine basic cuts in observables that will separate uhecrons from the cosmic ray bulk, assuming this is composed by protons. If these are composed by heavier nucleus the separation will be much improved. We also discuss photon induced showers. The complementarity between uhecron detection in accelerator experiments is discussed.Comment: 9 page 9 figure

    Effects of the Energy Error Distribution of Fluorescence Telescopes on the UHECR energy spectrum

    Full text link
    The measurement of the ultra high energy cosmic ray (UHECR) spectrum is strongly affected by uncertainties on the reconstructed energy. The determination of the presence or absence of the GZK cutoff and its position in the energy spectrum depends not only on high statistics but also on the shape of the energy error distribution. Here we determine the energy error distribution for fluorescence telescopes, based on a Monte Carlo simulation. The HiRes and Auger fluorescence telescopes are simulated in detail. We analyze the UHECR spectrum convolved with this energy error distribution. We compare this spectrum with one convolved with a lognormal error distribution as well as with a Gaussian error distribution. We show that the energy error distribution for fluorescence detectors can not be represented by these known distributions. We conclude that the convolved energy spectrum will be smeared but not enough to affect the GZK cutoff detection. This conclusion stands for both HiRes and Auger fluorescence telescopes. This result differs from the effect of the energy error distribution obtained with ground detectors and reinforces the importance of the fluorescence energy measurement. We also investigate the effect of possible fluorescence yield measurement errors in the energy spectrum.Comment: 24 pages, 11 figure
    corecore