4 research outputs found

    Metric characterization of cluster dynamics on the Sierpinski gasket

    Full text link
    We develop and implement an algorithm for the quantitative characterization of cluster dynamics occurring on cellular automata defined on an arbitrary structure. As a prototype for such systems we focus on the Ising model on a finite Sierpsinski Gasket, which is known to possess a complex thermodynamic behavior. Our algorithm requires the projection of evolving configurations into an appropriate partition space, where an information-based metrics (Rohlin distance) can be naturally defined and worked out in order to detect the changing and the stable components of clusters. The analysis highlights the existence of different temperature regimes according to the size and the rate of change of clusters. Such regimes are, in turn, related to the correlation length and the emerging "critical" fluctuations, in agreement with previous thermodynamic analysis, hence providing a non-trivial geometric description of the peculiar critical-like behavior exhibited by the system. Moreover, at high temperatures, we highlight the existence of different time scales controlling the evolution towards chaos.Comment: 20 pages, 8 figure

    Metric Features of a Dipolar Model

    Full text link
    The lattice spin model, with nearest neighbor ferromagnetic exchange and long range dipolar interaction, is studied by the method of time series for observables based on cluster configurations and associated partitions, such as Shannon entropy, Hamming and Rohlin distances. Previous results based on the two peaks shape of the specific heat, suggested the existence of two possible transitions. By the analysis of the Shannon entropy we are able to prove that the first one is a true phase transition corresponding to a particular melting process of oriented domains, where colored noise is present almost independently of true fractality. The second one is not a real transition and it may be ascribed to a smooth balancing between two geometrical effects: a progressive fragmentation of the big clusters (possibly creating fractals), and the slow onset of a small clusters chaotic phase. Comparison with the nearest neighbor Ising ferromagnetic system points out a substantial difference in the cluster geometrical properties of the two models and in their critical behavior.Comment: 20 pages, 15 figures, submitted to JPhys
    corecore