4 research outputs found
Metric characterization of cluster dynamics on the Sierpinski gasket
We develop and implement an algorithm for the quantitative characterization
of cluster dynamics occurring on cellular automata defined on an arbitrary
structure. As a prototype for such systems we focus on the Ising model on a
finite Sierpsinski Gasket, which is known to possess a complex thermodynamic
behavior. Our algorithm requires the projection of evolving configurations into
an appropriate partition space, where an information-based metrics (Rohlin
distance) can be naturally defined and worked out in order to detect the
changing and the stable components of clusters. The analysis highlights the
existence of different temperature regimes according to the size and the rate
of change of clusters. Such regimes are, in turn, related to the correlation
length and the emerging "critical" fluctuations, in agreement with previous
thermodynamic analysis, hence providing a non-trivial geometric description of
the peculiar critical-like behavior exhibited by the system. Moreover, at high
temperatures, we highlight the existence of different time scales controlling
the evolution towards chaos.Comment: 20 pages, 8 figure
Metric Features of a Dipolar Model
The lattice spin model, with nearest neighbor ferromagnetic exchange and long
range dipolar interaction, is studied by the method of time series for
observables based on cluster configurations and associated partitions, such as
Shannon entropy, Hamming and Rohlin distances. Previous results based on the
two peaks shape of the specific heat, suggested the existence of two possible
transitions. By the analysis of the Shannon entropy we are able to prove that
the first one is a true phase transition corresponding to a particular melting
process of oriented domains, where colored noise is present almost
independently of true fractality. The second one is not a real transition and
it may be ascribed to a smooth balancing between two geometrical effects: a
progressive fragmentation of the big clusters (possibly creating fractals), and
the slow onset of a small clusters chaotic phase. Comparison with the nearest
neighbor Ising ferromagnetic system points out a substantial difference in the
cluster geometrical properties of the two models and in their critical
behavior.Comment: 20 pages, 15 figures, submitted to JPhys