122 research outputs found

    Fermion masses in SO(10) with a single adjoint Higgs field

    Full text link
    It has recently been shown how to break SO(10) down to the Standard Model in a realistic way with only one adjoint Higgs. The expectation value of this adjoint must point in the B-L direction. This has consequences for the possible form of the quark and lepton mass matrices. These consequences are explored in this paper, and it is found that one is naturally led to consider a particular form for the masses of the heavier generations. This form implies typically that there should be large (nearly maximal) mixing of the mu- and tau-neutrinos. An explanation that does not involve large tan beta also emerges for the fact that b and tau are light compared to the top quark.Comment: 20 pages, LaTeX, clarification of statements about multiple adjoint Higgs fields in the context of superstring theor

    Resonant leptogenesis in a predictive SO(10) grand unified model

    Full text link
    An SO(10) grand unified model considered previously by the authors featuring lopsided down quark and charged lepton mass matrices is successfully predictive and requires that the lightest two right-handed Majorana neutrinons be nearly degenerate in order to obtain the LMA solar neutrino solution. Here we use this model to test its predictions for baryogenesis through resonant-enhanced leptogenesis. With the conventional type I seesaw mechanism, the best predictions for baryogenesis appear to fall a factor of three short of the observed value. However, with a proposed type III seesaw mechanism leading to three pairs of massive pseudo-Dirac neutrinos, resonant leptogenesis is decoupled from the neutrino mass and mixing issues with successful baryogenesis easily obtained.Comment: 22 pages including 1 figure; published version with reference adde

    Constraints on the rare tau decays from mu --> e gamma in the supersymmetric see-saw model

    Full text link
    It is now a firmly established fact that all family lepton numbers are violated in Nature. In this paper we discuss the implications of this observation for future searches for rare tau decays in the supersymmetric see-saw model. Using the two loop renormalization group evolution of the soft terms and the Yukawa couplings we show that there exists a lower bound on the rate of the rare process mu --> e gamma of the form BR(mu --> e gamma) > C BR(tau --> mu gamma) BR(tau --> e gamma), where C is a constant that depends on supersymmetric parameters. Our only assumption is the absence of cancellations among the high-energy see-saw parameters. We also discuss the implications of this bound for future searches for rare tau decays. In particular, for large regions of the mSUGRA parameter space, we show that present B-factories could discover either tau --> mu gamma or tau --> e gamma, but not both.Comment: 39 pages, 7 figures. Typos corrected, references adde

    SUSY GUTs under Siege : Proton Decay

    Get PDF
    SO(10) supersymmetric grand unified theories [SUSY GUTs] provide a beautiful framework for physics beyond the standard model. Experimental measurements of the three gauge couplings are consistent with unification at a scale MG3×1016M_G \sim 3 \times 10^{16} GeV. In addition predictive models for fermion masses and mixing angles have been found which fit the low energy data, including the recent data for neutrino oscillations. SO(10) boundary conditions can be tested via the spectrum of superparticles. The simplest models also predict neutron and proton decay rates. In this paper we discuss nucleon decay rates and obtain reasonable upper bounds. A clear picture of the allowed SUSY spectra as constrained by nucleon decay is presented.Comment: 13 page

    Lepton Flavor Violation in the SUSY-GUT Models with Lopsided Mass Matrix

    Full text link
    The tiny neutrino masses measured in the neutrino oscillation experiments can be naturally explained by the supersymmetric see-saw mechanism. If the supersymmetry breaking is mediated by gravity, the see-saw models may predict observable lepton flavor violating effects. In this work, we investigate the lepton flavor violating process μeγ\mu\to e\gamma in the kind of neutrino mass models based on the idea of the ``lopsided'' form of the charged lepton mass matrix. The constraints set by the muon anomalous magnetic moment are taken into account. We find the present models generally predict a much larger branching ratio of μeγ\mu\to e\gamma than the experimental limit. Conversely, this process may give strong constraint on the lepton flavor structure. Following this constraint we then find a new kind of the charged lepton mass matrix. The feature of the structure is that both the elements between the 2-3 and 1-3 generations are ``lopsided''. This structure produces a very small 1-3 mixing and a large 1-2 mixing in the charged lepton sector, which naturally leads to small Br(μeγ)Br(\mu\to e\gamma) and the LMA solution for the solar neutrino problem.Comment: 24 pages, 8 figure

    Quark and Lepton Mass Matrices in the SO(10) Grand Unified Theory with Generation Flipping

    Full text link
    We investigate the SO(10) grand unified model with generation flipping. The model contains one extra matter multiplet ψ(10)\psi(10) and it mixes with the usual matter multiplets ψi(16)\psi_i(16) when the SO(10) is broken down to SU(5). We find the parameter region of the model in which the observed quark masses and mixings are well reproduced. The resulting parameter region is consistent with the observation that only ψi(16)\psi_i(16) have a source of hierarchies and indicates that the mixing between second and third generations tends to be large in the lepton sector, which is consistent with the observed maximal mixing of the atmospheric neutrino oscillation. We also show that the model can accommodate MSW and vacuum oscillation solutions to the solar neutrino deficit depending on the form of the Majorana mass matrix for the right-handed neutrinos.Comment: 28 pages, Late

    Deviation of Atmospheric Mixing from Maximal and Structure in the Leptonic Flavor Sector

    Full text link
    I attempt to quantify how far from maximal one should expect the atmospheric mixing angle to be given a neutrino mass-matrix that leads, at zeroth order, to a nu_3 mass-eigenstate that is 0% nu_e, 50% nu_mu, and 50% nu_tau. This is done by assuming that the solar mass-squared difference is induced by an "anarchical" first order perturbation, an approach than can naturally lead to experimentally allowed values for all oscillation parameters. In particular, both |cos 2theta_atm| (the measure for the deviation of atmospheric mixing from maximal) and |U_e3| are of order sqrt(Delta m^2_sol/Delta m^2_atm) in the case of a normal neutrino mass-hierarchy, or of order Delta m^2_sol/Delta m^2_atm in the case of an inverted one. Hence, if any of the textures analyzed here has anything to do with reality, next-generation neutrino experiments can see a nonzero cos 2theta_atm in the case of a normal mass-hierarchy, while in the case of an inverted mass-hierarchy only neutrino factories should be able to see a deviation of sin^2 2theta_atm from 1.Comment: 12 pages, no figures, references and acknowledgments adde

    νdμΔ++n\nu d \to \mu^- \Delta^{++} n Reaction and Axial Vector NΔN-\Delta Coupling

    Full text link
    The reaction νdμΔ++n\nu d \to \mu^- \Delta^{++} n is studied in the region of low q2q^2 to investigate the effect of deuteron structure and width of the Δ\Delta resonance on the differential cross section. The results are used to extract the axial vector NΔN-\Delta coupling C5AC^{A}_5 from the experimental data on this reaction. The possibility to determine this coupling from electroweak interaction experiments with high intensity electron accelerators is discussed.Comment: 14 pages, REVTEX, 5 figure

    Four Light Neutrinos in Singular Seesaw Mechanism with Abelian Flavor Symmetry

    Get PDF
    The four light neutrino scenario, which explains the atmosphere, solar and LSND neutrino experiments, is studied in the framework of the seesaw mechanism. By taking both the Dirac and Majorana mass matrix of neutrinos to be singular, the four neutrino mass spectrum consisting of two almost degenerate pairs separated by a mass gap 1\sim 1 eV is naturally generated. Moreover the right-handed neutrino Majorana mass can be at 1014\sim 10^{14} GeV scale unlike in the usual singular seesaw mechanism. Abelian flavor symmetry is used to produce the required neutrino mass pattern. A specific example of the flavor charge assignment is provided to show that maximal mixings between the νμντ\nu_\mu-\nu_\tau and νeνs\nu_e-\nu_s are respectively attributed to the atmosphere and solar neutrino anomalies while small mixing between two pairs to the LSND results. The implication in the other fermion masses is also discussed.Comment: Firnal version to appear in PR
    corecore