15,258 research outputs found

    A GENERIC MODEL FOR KNOWLEDGE BASES

    Get PDF
    A knowledge base system is a database system with logical, temporal and topological structures together with operations on these structures. vVe provide the necessary mathematical concepts for modeling such a system. These are parametrized hierarchical relations, logic functions, hierarchies of variables with their hierarchical control operators, and neighborhood/similarity structures. These concepts are then applied to define a model of a knowledge module. By composition of knowledge modules we obtain the knowledge system model

    Stratocumulus cloud height variations determined from surface and satellite observations

    Get PDF
    Determination of cloud-top heights from satellite-inferred cloud-top temperatures is a relatively straightforward procedure for a well-behaved troposphere. The assumption of a monotonically decreasing temperature with increasing altitude is commonly used to assign a height to a given cloud-top temperature. In the hybrid bispectral threshold method, or HBTM, Minnis et al. (1987) assume that the lapse rate for the troposphere is -6.5/Kkm and that the surface temperature which calibrated this lapse rate is the 24 hour mean of the observed or modeled clear-sky, equivalent blackbody temperature. The International Satellite Cloud Climatology Project (ISCCP) algorithm (Rossow et al., 1988) attempts a more realistic assignment of height by utilizing interpolations of analyzed temperature fields from the National Meteorological Center (NMC) to determine the temperature at a given level over the region of interest. Neither these nor other techniques have been tested to any useful extent. The First ISCCP Regional Experiment (FIRE) Intensive Field Observations (IFO) provide an excellent opportunity to assess satellite-derived cloud height results because of the availability of both direct and indirect cloud-top altitude data of known accuracy. The variations of cloud-top altitude during the Marine Stratocumulus IFO (MSIFO, June 29 to July 19, 1987) derived from surface, aircraft, and satellite data are examined

    Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignment

    Full text link
    Homologous gene shuffling between DNA promotes genetic diversity and is an important pathway for DNA repair. For this to occur, homologous genes need to find and recognize each other. However, despite its central role in homologous recombination, the mechanism of homology recognition is still an unsolved puzzle. While specific proteins are known to play a role at later stages of recombination, an initial coarse grained recognition step has been proposed. This relies on the sequence dependence of the DNA structural parameters, such as twist and rise, mediated by intermolecular interactions, in particular electrostatic ones. In this proposed mechanism, sequences having the same base pair text, or are homologous, have lower interaction energy than those sequences with uncorrelated base pair texts; the difference termed the recognition energy. Here, we probe how the recognition energy changes when one DNA fragment slides past another, and consider, for the first time, homologous sequences in antiparallel alignment. This dependence on sliding was termed the recognition well. We find that there is recognition well for anti-parallel, homologous DNA tracts, but only a very shallow one, so that their interaction will differ little from the interaction between two nonhomologous tracts. This fact may be utilized in single molecule experiments specially targeted to test the theory. As well as this, we test previous theoretical approximations in calculating the recognition well for parallel molecules against MC simulations, and consider more rigorously the optimization of the orientations of the fragments about their long axes. The more rigorous treatment affects the recognition energy a little, when the molecules are considered rigid. However when torsional flexibility of the DNA molecules is introduced, we find excellent agreement between analytical approximation and simulation.Comment: Paper with supplemental material attached. 41 pages in all, 4 figures in main text, 3 figures in supplmental. To be submitted to Journa

    Doppler peaks from active perturbations

    Get PDF
    We examine how the qualitative structure of the Doppler peaks in the angular power spectrum of the cosmic microwave anisotropy depends on the fundamental nature of the perturbations which produced them. The formalism of Hu and Sugiyama is extended to treat models with cosmic defects. We discuss how perturbations can be ``active'' or ``passive'' and ``incoherent'' or ``coherent'', and show how causality and scale invariance play rather different roles in these various cases. We find that the existence of secondary Doppler peaks and the rough placing of the primary peak unambiguously reflect these basic properties.Comment: uufile, 8pages, 3 figures. Now available at http://euclid.tp.ph/Papers/index.html; Changes: URL added, Eqn. (8) expanded, grant numbers include

    The controversy in the γγρρ\gamma\gamma\to\rho\rho process: potential scattering or qqqˉqˉqq\bar{q}\bar{q} resonance ?

    Full text link
    The γγρ0ρ04π\gamma\gamma\to\rho^0\rho^0\to 4 \pi reaction shows a broad peak at 1.5 GeV in the (JP,Jz)=(2+,2)(J^P,J_z)=(2^+,2) channel which has no counterpart in the ρ+ρ\rho^+\rho^- channel. This "resonance" is considered as a candidate for a qqqˉqˉqq\bar q\bar q state in the "s-channel". We show, however, that it can also be explained by potential scattering of ρ0ρ0\rho^0\rho^0 via the σ\sigma- exchange in the "t-channel".Comment: 12 pages, latex, 3 postscript figures, to appear in Zeitschrift fur Physi

    Initial Conditions for Bubble Universes

    Full text link
    The "bubble universes" of Coleman and De Luccia play a crucial role in string cosmology. Since our own Universe is supposed to be of this kind, bubble cosmology should supply definite answers to the long-standing questions regarding cosmological initial conditions. In particular, it must explain how an initial singularity is avoided, and also how the initial conditions for Inflation were established. We argue that the simplest non-anthropic approach to these problems involves a requirement that the spatial sections defined by distinguished bubble observers should not be allowed to have arbitrarily small volumes. Casimir energy is a popular candidate for a quantum effect which can ensure this, but [because it violates energy conditions] there is a danger that it could lead to non-perturbative instabilities in string theory. We make a simple proposal for the initial conditions of a bubble universe, and show that our proposal ensures that the system is non-perturbatively stable. Thus, low-entropy conditions can be established at the beginning of a bubble universe without violating the Second Law of thermodynamics and without leading to instability in string theory. These conditions are inherited from the ambient spacetime.Comment: Further clarifications; 28 pages including three eps files. This is the final [accepted for publication] versio

    Identification of Neutral B Mesons Using Correlated Hadrons

    Full text link
    The identification of the flavor of a neutral BB meson can make use of hadrons produced nearby in phase space. Examples include the decay of ``BB^{**}'' resonances or the production of hadrons as a result of the fragmentation process. Some aspects of this method are discussed, including time-dependent effects in neutral BB decays to flavor states, to eigenstates of CP and to other states, and the effects of possible coherence between B0B^0 and B0\overline{B}^0 in the initial state. We study the behavior of the leading hadrons in bb-quark jets and the expected properties of BB^{**} resonances. These are extrapolated from the corresponding DD^{**} resonances, of whose properties we suggest further studies.Comment: To be submitted to Phys. Rev. D. 26 pages, LaTeX, figures not included (available upon request). Technion-PH-93-32 / EFI 93-4

    Cosmic Strings in an Open Universe with Baryonic and Non-Baryonic Dark Matter

    Full text link
    We study the effects of cosmic strings on structure formation in open universes. We calculate the power spectrum of density perturbations for two class of models: one in which all the dark matter is non baryonic (CDM) and one in which it is all baryonic (BDM). Our results are compared to the 1 in 6 IRAS QDOT power spectrum. The best candidates are then used to estimate μ\mu, the energy per unit length of the string network. Some comments are made on mechanisms by which structures are formed in the two theories.Comment: uu-encoded compressed tar of postscript files, Imperial/TP/94-95/0
    corecore