19,445 research outputs found

    D-branes in the diagonal SU(2) coset

    Full text link
    The symmetry preserving D-branes in coset theories have previously been described as being centered around projections of products of conjugacy classes in the underlying Lie groups. Here, we investigate the coset where a diagonal action of SU(2) is divided out from SU(2)\times SU(2). The corresponding target space is described as a (3-dimensional) pillow with four distinguished corners. It is shown that the (fractional) brane which corresponds to the fixed point that arises in the CFT description, is spacefilling. Moreover, the spacefilling brane is the only one that reaches all of the corners. The other branes are 3, 1 and 0 - dimensional.Comment: v2: reference added, 9 page

    Performance of the LHCb High Level Trigger in 2012

    Full text link
    The trigger system of the LHCb experiment is discussed in this paper and its performance is evaluated on a dataset recorded during the 2012 run of the LHC. The main purpose of the LHCb trigger system is to separate heavy flavour signals from the light quark background. The trigger reduces the roughly 11MHz of bunch-bunch crossings with inelastic collisions to a rate of 5kHz, which is written to storage.Comment: Proceedings for the 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP

    Radiobiological studies with monoenergetic neutrons

    Get PDF
    The Radiological Research Accelerator Facility (RARAF) has the capability of producing essentially monoenergetic neutron beams, ranging in energy from 16.4 MeV down to 220 keV. In addition, two lower energy neutron beams are available which consist of a wide spectrum of energies and are described as the 110 keV and 60 keV spectra. Seedlings of Vicia faba have been used to measure the oxygen enhancement ratio (OER) and the relative biological effectiveness (RBE) of each of these neutron beams. The OER decreases as the neutron energy is reduced between 15.4 MeV and 220 keV, but does not appear to decrease further for lower energy neutrons. RBE increases as the neutron energy is reduced from 15.4 AleV to 440 keV; the curve then goes through a maximum at around 350 keV, and for lower energies the RBE falls again

    Locating Overlap Information in Quantum Systems

    Full text link
    When discussing the black hole information problem the term ``information flow'' is frequently used in a rather loose fashion. In this article I attempt to make this notion more concrete. I consider a Hilbert space which is constructed as a tensor product of two subspaces (representing for example inside and outside the black hole). I discuss how the system has the capacity to contain information which is in NEITHER of the subspaces. I attempt to quantify the amount of information located in each of the two subspaces, and elsewhere, and analyze the extent to which unitary evolution can correspond to ``information flow''. I define the notion of ``overlap information'' which appears to be well suited to the problem.Comment: 25 pages plain LaTeX, no figures. Imperial/TP/93-94/2

    Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity

    Get PDF
    We demonstrate a single-photon collection efficiency of (44.3±2.1)%(44.3\pm2.1)\% from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of g(2)(0)=(4±5)%g^{(2)}(0)=(4\pm5)\% recorded above the saturation power. The high efficiency is directly confirmed by detecting up to 962±46962\pm46 kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching 0.77±0.190.77\pm0.19 ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip.Comment: 13 pages, 8 figures, submitte

    Electromechanical coupling in free-standing AlGaN/GaN planar structures

    Full text link
    The strain and electric fields present in free-standing AlGaN/GaN slabs are examined theoretically within the framework of fully-coupled continuum elastic and dielectric models. Simultaneous solutions for the electric field and strain components are obtained by minimizing the electric enthalpy. We apply constraints appropriate to pseudomorphic semiconductor epitaxial layers and obtain closed-form analytic expressions that take into account the wurtzite crystal anisotropy. It is shown that in the absence of free charges, the calculated strain and electric fields are substantially differently from those obtained using the standard model without electromechanical coupling. It is also shown, however, that when a two-dimensional electron gas is present at the AlGaN/GaN interface, a condition that is the basis for heterojunction field-effect transistors, the electromechanical coupling is screened and the decoupled model is once again a good approximation. Specific cases of these calculations corresponding to transistor and superlattice structures are discussed.Comment: revte
    • …
    corecore