2 research outputs found

    Sexually Dimorphic Effects of a Western Diet on Brain Mitochondrial Bioenergetics and Neurocognitive Function

    No full text
    A Western diet (WD), high in sugars and saturated fats, impairs learning and memory function and contributes to weight gain. Mitochondria in the brain provide energy for neurocognitive function and may play a role in body weight regulation. We sought to determine whether a WD alters behavior and metabolic outcomes in male and female rodents through impacting hippocampal and hypothalamic mitochondrial bioenergetics. Results revealed a sexually dimorphic macronutrient preference, where males on the WD consumed a greater percentage of calories from fat/protein and females consumed a greater percentage of calories from a sugar-sweetened beverage. Both males and females on a WD gained body fat and showed impaired glucose tolerance when compared to same-sex controls. Males on a WD demonstrated impaired hippocampal functioning and an elevated tendency toward a high membrane potential in hippocampal mitochondria. Comprehensive bioenergetics analysis of WD effects in the hypothalamus revealed a tissue-specific adaption, where males on the WD oxidized more fat, and females oxidized more fat and carbohydrates at peak energy demand compared to same-sex controls. These results suggest that adult male rats show a susceptibility toward hippocampal dysfunction on a WD, and that hypothalamic mitochondrial bioenergetics are altered by WD in a sex-specific manner

    Lifelong Ulk1-Mediated Autophagy Deficiency in Muscle Induces Mitochondrial Dysfunction and Contractile Weakness

    No full text
    The accumulation of damaged mitochondria due to insufficient autophagy has been implicated in the pathophysiology of skeletal muscle aging. Ulk1 is an autophagy-related kinase that initiates autophagosome assembly and may also play a role in autophagosome degradation (i.e., autophagy flux), but the contribution of Ulk1 to healthy muscle aging is unclear. Therefore, the purpose of this study was to investigate the role of Ulk1-mediated autophagy in skeletal muscle aging. At age 22 months (80% survival rate), muscle contractile and metabolic function were assessed using electrophysiology in muscle-specific Ulk1 knockout mice (MKO) and their littermate controls (LM). Specific peak-isometric torque of the ankle dorsiflexors (normalized by tibialis anterior muscle cross-sectional area) and specific force of the fast-twitch extensor digitorum longus muscles was reduced in MKO mice compared to LM mice (p < 0.03). Permeabilized muscle fibers from MKO mice had greater mitochondrial content, yet lower mitochondrial oxygen consumption and greater reactive oxygen species production compared to fibers from LM mice (p ≤ 0.04). Alterations in neuromuscular junction innervation patterns as well as changes to autophagosome assembly and flux were explored as possible contributors to the pathological features in Ulk1 deficiency. Of primary interest, we found that Ulk1 phosphorylation (activation) to total Ulk1 protein content was reduced in older muscles compared to young muscles from both human and mouse, which may contribute to decreased autophagy flux and an accumulation of dysfunctional mitochondria. Results from this study support the role of Ulk1-mediated autophagy in aging skeletal muscle, reflecting Ulk1′s dual role in maintaining mitochondrial integrity through autophagosome assembly and degradation
    corecore