2 research outputs found

    An automated in vitro model for the evaluation of ultrasound modalities measuring myocardial deformation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Echocardiography is the method of choice when one wishes to examine myocardial function. Qualitative assessment of the 2D grey scale images obtained is subjective, and objective methods are required. Speckle Tracking Ultrasound is an emerging technology, offering an objective mean of quantifying left ventricular wall motion. However, before a new ultrasound technology can be adopted in the clinic, accuracy and reproducibility needs to be investigated.</p> <p>Aim</p> <p>It was hypothesized that the collection of ultrasound sample data from an in vitro model could be automated. The aim was to optimize an in vitro model to allow for efficient collection of sample data.</p> <p>Material & Methods</p> <p>A tissue-mimicking phantom was made from water, gelatin powder, psyllium fibers and a preservative. Sonomicrometry crystals were molded into the phantom. The solid phantom was mounted in a stable stand and cyclically compressed. Peak strain was then measured by Speckle Tracking Ultrasound and sonomicrometry.</p> <p>Results</p> <p>We succeeded in automating the acquisition and analysis of sample data. Sample data was collected at a rate of 200 measurement pairs in 30 minutes. We found good agreement between Speckle Tracking Ultrasound and sonomicrometry in the in vitro model. Best agreement was 0.83 ± 0.70%. Worst agreement was -1.13 ± 6.46%.</p> <p>Conclusions</p> <p>It has been shown possible to automate a model that can be used for evaluating the in vitro accuracy and precision of ultrasound modalities measuring deformation. Sonomicrometry and Speckle Tracking Ultrasound had acceptable agreement.</p
    corecore