2,713 research outputs found
Recommended from our members
Search for lepton-flavour-violating decays of Higgs-like bosons.
A search is presented for a Higgs-like boson with mass in the range 45 to 195 GeV/c2 decaying into a muon and a tau lepton. The dataset consists of proton-proton interactions at a centre-of-mass energy of 8 TeV , collected by the LHCb experiment, corresponding to an integrated luminosity of 2 fb-1 . The tau leptons are reconstructed in both leptonic and hadronic decay channels. An upper limit on the production cross-section multiplied by the branching fraction at 95% confidence level is set and ranges from 22 pb for a boson mass of 45 GeV/c2 to 4 pb for a mass of 195 GeV/c2
Measurement of J/ψ production in association with a W ± boson with pp data at 8 TeV
A measurement of the production of a prompt J/ψ meson in association with a W± boson with W± → μν and J/ψ → μ+μ− is presented for J/ψ transverse momenta in the range 8.5–150 GeV and rapidity |yJ/ψ| < 2.1 using ATLAS data recorded in 2012 at the LHC. The data were taken at a proton-proton centre-of-mass energy of s = 8 TeV and correspond to an integrated luminosity of 20.3 fb−1. The ratio of the prompt J/ψ plus W± cross-section to the inclusive W± cross-section is presented as a differential measurement as a function of J/ψ transverse momenta and compared with theoretical predictions using different double-parton-scattering cross-sections. [Figure not available: see fulltext.]
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
Amplitude analysis and branching fraction measurement of B + → D ∗ − D s + π + decays
The decays of the B+ meson to the final state D∗−Ds+π+ are studied in proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of 9 fb−1. The ratio of branching fractions of the B+→D∗−Ds+π+ and B0→D∗−Ds+ decays is measured to be 0.173 ± 0.006 ± 0.010, where the first uncertainty is statistical and the second is systematic. Using partially reconstructed Ds∗+→Ds+γ and Ds+π0 decays, the ratio of branching fractions between the B+→D∗−Ds∗+π+ and B+→D∗−Ds+π+ decays is determined as 1.31 ± 0.07 ± 0.14. An amplitude analysis of the B+→D∗−Ds+π+ decay is performed for the first time, revealing dominant contributions from known excited charm resonances decaying to the D*−π+ final state. No significant evidence of exotic contributions in the Ds+π+ or D∗−Ds+ channels is found. The fit fraction of the scalar state Tcs¯0∗2900++ observed in the B+→D−Ds+π+ decay is determined to be less than 2.3% at a 90% confidence level
Comprehensive analysis of local and nonlocal amplitudes in the B 0 → K *0 μ + μ − decay
A comprehensive study of the local and nonlocal amplitudes contributing to the decay B0 → K*0(→ K+π−)μ+μ− is performed by analysing the phase-space distribution of the decay products. The analysis is based on pp collision data corresponding to an integrated luminosity of 8.4 fb−1 collected by the LHCb experiment. This measurement employs for the first time a model of both one-particle and two-particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum without any veto regions around the narrow charmonium resonances. In this way it is possible to explicitly isolate the local and nonlocal contributions and capture the interference between them. The results show that interference with nonlocal contributions, although larger than predicted, only has a minor impact on the Wilson Coefficients determined from the fit to the data. For the local contributions, the Wilson Coefficient C9, responsible for vector dimuon currents, exhibits a 2.1σ deviation from the Standard Model expectation. The Wilson Coefficients C10, C9′ and C10′ are all in better agreement than C9 with the Standard Model and the global significance is at the level of 1.5σ. The model used also accounts for nonlocal contributions from B0→ K*0[τ+τ−→ μ+μ−] rescattering, resulting in the first direct measurement of the bsττ vector effective-coupling C9τ
The PADME electromagnetic calorimeter
The PADME experiment, hosted at Laboratori Nazionali di Frascati in Italy, is going to start its data taking in September 2018. It is designed to search for the Dark Photon (indicated by the symbol A′), an hypothetical particle that can explain the Dark Matter elusiveness, possibly produced in the reaction e + e - → A′ γ. Together with the target, the segmented electromagnetic calorimeter is the most important component of the experiment, since it is needed to detect the recoil photon energy and position, in such a way to measure the A′ mass. It will consist of 616 2.1 × 2.1 × 23.0 cm3 BGO crystals arranged in a cylindrical shape and read by HZC photomultipliers with a diameter of 1.9 cm. Here we present the results obtained during the measurements performed on the scintillating units with a radioactive source and test beams, together with an overall description of the entire experiment
Transverse polarization measurement of Λ hyperons in pNe collisions at s NN = 68. 4 GeV with the LHCb detector
A measurement of the transverse polarization of the Λ and Λ¯ hyperons in pNe fixed-target collisions at sNN = 68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λ → pπ− together with its charge conjugated process, the integrated values measured arePΛ=0.029±0.019stat±0.012syst, PΛ¯=0.003±0.023stat±0.014syst. Furthermore, the results are shown as a function of the Feynman x variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements
Amplitude analysis of the radiative decay B s 0 → K + K − γ
A search for radiative decay of Bs0 mesons to orbitally excited K+K− states is performed using proton proton collisions recorded by the LHCb experiment, corresponding to an integrated luminosity of 9 fb−1. The dikaon spectrum in the mass range mKK < 2400 MeV/c2 is dominated by the ϕ(1020) resonance that accounts for almost 70% of the decay rate. Considering the possible contributions of f2(1270), f2′(1525) and f2(2010) meson states, the overall tensor contribution to the amplitude is measured to beFf2=16.8±0.5stat.±0.7syst.%, mostly dominated by the f2′(1525) state. Several statistically equivalent solutions are obtained for the detailed resonant structure depending on whether the smaller amplitudes interfere destructively or constructively with the dominant amplitude. The preferred solution that corresponds to the lowest values of the fit fractions along with constructive interference leads to the relative branching ratio measurementBBs0→f2′γBBs0→ϕγ=19.4−0.8+0.9stat.−0.5+1.4syst.±0.5B%, where the last uncertainty is due to the ratio of measured branching fractions to the K+K− final state. This result represents the first observation of the radiative Bs0→f2′1525γ decay, which is the second radiative transition observed in the Bs0 sector
Tracking of charged particles with nanosecond lifetimes at LHCb
A method is presented to reconstruct charged particles with lifetimes between 10ps and 10ns, which considers a combination of their decay products and the partial tracks created by the initial charged particle. Using the Ξ- baryon as a benchmark, the method is demonstrated with simulated events and proton-proton collision data at s=13TeV, corresponding to an integrated luminosity of 2.0fb-1 collected with the LHCb detector in 2018. Significant improvements in the angular resolution and the signal purity are obtained. The method is implemented as part of the LHCb Run 3 event trigger in a set of requirements to select detached hyperons. This is the first demonstration of the applicability of this approach at the LHC, and the first to show its scaling with instantaneous luminosity
Multiplicity dependence of σ ψ (2 S ) /σ J/ψ in pp collisions at s = 13 TeV
The ratio of production cross-sections of ψ(2S) over J/ψ mesons as a function of charged-particle multiplicity in proton-proton collisions at a centre-of-mass energy s = 13 TeV is measured with a data sample collected by the LHCb detector, corresponding to an integrated luminosity of 658 pb−1. The ratio is measured for both prompt and non-prompt ψ(2S) and J/ψ mesons. When there is an overlap between the rapidity ranges over which multiplicity and charmonia production are measured, a multiplicity-dependent modification of the ratio is observed for prompt mesons. No significant multiplicity dependence is found when the ranges do not overlap. For non-prompt production, the ψ(2S)-to-J/ψ production ratio is roughly independent of multiplicity, irrespective of the rapidity range over which the multiplicity is measured. The results are compared to predictions of the co-mover model and agree well except in the low multiplicity region. The ratio of production cross-sections of ψ(2S) over J/ψ mesons are cross-checked with other measurements in di-lepton channels and found to be compatible
- …