2,876 research outputs found
Molecular Electroporation and the Transduction of Oligoarginines
Certain short polycations, such as TAT and polyarginine, rapidly pass through
the plasma membranes of mammalian cells by an unknown mechanism called
transduction as well as by endocytosis and macropinocytosis. These
cell-penetrating peptides (CPPs) promise to be medically useful when fused to
biologically active peptides. I offer a simple model in which one or more CPPs
and the phosphatidylserines of the inner leaflet form a kind of capacitor with
a voltage in excess of 180 mV, high enough to create a molecular electropore.
The model is consistent with an empirical upper limit on the cargo peptide of
40--60 amino acids and with experimental data on how the transduction of a
polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of
arginines in the CPP and on the CPP concentration. The model makes three
testable predictions.Comment: 15 pages, 5 figure
Unifying model of driven polymer translocation
We present a Brownian dynamics model of driven polymer translocation, in
which non-equilibrium memory effects arising from tension propagation (TP)
along the cis side subchain are incorporated as a time-dependent friction. To
solve the effective friction, we develop a finite chain length TP formalism,
expanding on the work of Sakaue [Sakaue, PRE 76, 021803 (2007)]. The model,
solved numerically, yields results in excellent agreement with molecular
dynamics simulations in a wide range of parameters. Our results show that
non-equilibrium TP along the cis side subchain dominates the dynamics of driven
translocation. In addition, the model explains the different scaling of
translocation time w.r.t chain length observed both in experiments and
simulations as a combined effect of finite chain length and pore-polymer
interactions.Comment: 7 pages, 3 figure
Membrane fluctuations near a plane rigid surface
We use analytical calculations and Monte Carlo simulations to determine the
thermal fluctuation spectrum of a membrane patch of a few tens of nanometer in
size, whose corners are located at a fixed distance above a plane rigid
surface. Our analysis shows that the surface influence on the bilayer
fluctuations can be effectively described in terms of a uniform confining
potential that grows quadratically with the height of the membrane relative
to the surface: . The strength of the harmonic
confining potential vanishes when the corners of the membrane patch are placed
directly on the surface (), and achieves its maximum value when is of
the order of a few nanometers. However, even at maximum strength the
confinement effect is quite small and has noticeable impact only on the
amplitude of the largest bending mode.Comment: Accepted for publication in Phys. Rev.
Correlated dynamics of inclusions in a supported membrane
The hydrodynamic theory of heterogeneous fluid membranes is extended to the
case of a membrane adjacent to a solid substrate. We derive the coupling
diffusion coefficients of pairs of membrane inclusions in the limit of large
separation compared to the inclusion size. Two-dimensional compressive stresses
in the membrane make the coupling coefficients decay asymptotically as
with interparticle distance . For the common case, where the distance to the
substrate is of sub-micron scale, we present expressions for the coupling
between distant disklike inclusions, which are valid for arbitrary inclusion
size. We calculate the effect of inclusions on the response of the membrane and
the associated corrections to the coupling diffusion coefficients to leading
order in the concentration of inclusions. While at short distances the response
is modified as if the membrane were a two-dimensional suspension, the
large-distance response is not renormalized by the inclusions.Comment: 15 page
Solid domains in lipid vesicles and scars
The free energy of a crystalline domain coexisting with a liquid phase on a
spherical vesicle may be approximated by an elastic or stretching energy and a
line tension term. The stretching energy generally grows as the area of the
domain, while the line tension term grows with its perimeter. We show that if
the crystalline domain contains defect arrays consisting of finite length grain
boundaries of dislocations (scars) the stretching energy grows linearly with a
characteristic length of the crystalline domain. We show that this result is
critical to understand the existence of solid domains in lipid-bilayers in the
strongly segregated two phase region even for small relative area coverages.
The domains evolve from caps to stripes that become thinner as the line tension
is decreased. We also discuss the implications of the results for other
experimental systems and for the general problem that consists in finding the
ground state of a very large number of particles constrained to move on a fixed
geometry and interacting with an isotropic potential.Comment: 7 pages, 6 eps figure
Discreteness-induced Transition in Catalytic Reaction Networks
Drastic change in dynamics and statistics in a chemical reaction system,
induced by smallness in the molecule number, is reported. Through stochastic
simulations for random catalytic reaction networks, transition to a novel state
is observed with the decrease in the total molecule number N, characterized by:
i) large fluctuations in chemical concentrations as a result of intermittent
switching over several states with extinction of some molecule species and ii)
strong deviation of time averaged distribution of chemical concentrations from
that expected in the continuum limit, i.e., . The origin of
transition is explained by the deficiency of molecule leading to termination of
some reactions. The critical number of molecules for the transition is obtained
as a function of the number of molecules species M and that of reaction paths
K, while total reaction rates, scaled properly, are shown to follow a universal
form as a function of NK/M
Steady-state simulations using weighted ensemble path sampling
We extend the weighted ensemble (WE) path sampling method to perform rigorous
statistical sampling for systems at steady state. The straightforward
steady-state implementation of WE is directly practical for simple landscapes,
but not when significant metastable intermediates states are present. We
therefore develop an enhanced WE scheme, building on existing ideas, which
accelerates attainment of steady state in complex systems. We apply both WE
approaches to several model systems confirming their correctness and efficiency
by comparison with brute-force results. The enhanced version is significantly
faster than the brute force and straightforward WE for systems with WE bins
that accurately reflect the reaction coordinate(s). The new WE methods can also
be applied to equilibrium sampling, since equilibrium is a steady state
Stability domains of actin genes and genomic evolution
In eukaryotic genes the protein coding sequence is split into several
fragments, the exons, separated by non-coding DNA stretches, the introns.
Prokaryotes do not have introns in their genome. We report the calculations of
stability domains of actin genes for various organisms in the animal, plant and
fungi kingdoms. Actin genes have been chosen because they have been highly
conserved during evolution. In these genes all introns were removed so as to
mimic ancient genes at the time of the early eukaryotic development, i.e.
before introns insertion. Common stability boundaries are found in evolutionary
distant organisms, which implies that these boundaries date from the early
origin of eukaryotes. In general boundaries correspond with introns positions
of vertebrates and other animals actins, but not much for plants and fungi. The
sharpest boundary is found in a locus where fungi, algae and animals have
introns in positions separated by one nucleotide only, which identifies a
hot-spot for insertion. These results suggest that some introns may have been
incorporated into the genomes through a thermodynamic driven mechanism, in
agreement with previous observations on human genes. They also suggest a
different mechanism for introns insertion in plants and animals.Comment: 9 Pages, 7 figures. Phys. Rev. E in pres
The mechanical response of semiflexible networks to localized perturbations
Previous research on semiflexible polymers including cytoskeletal networks in
cells has suggested the existence of distinct regimes of elastic response, in
which the strain field is either uniform (affine) or non-uniform (non-affine)
under external stress. Associated with these regimes, it has been further
suggested that a new fundamental length scale emerges, which characterizes the
scale for the crossover from non-affine to affine deformations. Here, we extend
these studies by probing the response to localized forces and force dipoles. We
show that the previously identified nonaffinity length [D.A. Head et al. PRE
68, 061907 (2003).] controls the mesoscopic response to point forces and the
crossover to continuum elastic behavior at large distances.Comment: 16 pages, 18 figures; substantial changes to text and figures to
clarify the crossover to continuum elasticity and the role of finite-size
effect
Load fluctuations drive actin network growth
The growth of actin filament networks is a fundamental biological process
that drives a variety of cellular and intracellular motions. During motility,
eukaryotic cells and intracellular pathogens are propelled by actin networks
organized by nucleation-promoting factors, which trigger the formation of
nascent filaments off the side of existing filaments in the network. A Brownian
ratchet (BR) mechanism has been proposed to couple actin polymerization to
cellular movements, whereby thermal motions are rectified by the addition of
actin monomers at the end of growing filaments. Here, by following
actin--propelled microspheres using three--dimensional laser tracking, we find
that beads adhered to the growing network move via an object--fluctuating BR.
Velocity varies with the amplitude of thermal fluctuation and inversely with
viscosity as predicted for a BR. In addition, motion is saltatory with a broad
distribution of step sizes that is correlated in time. These data point to a
model in which thermal fluctuations of the microsphere or entire actin network,
and not individual filaments, govern motility. This conclusion is supported by
Monte Carlo simulations of an adhesion--based BR and suggests an important role
for membrane tension in the control of actin--based cellular protrusions.Comment: To be published in PNA
- …