4,295 research outputs found
Molecular Electroporation and the Transduction of Oligoarginines
Certain short polycations, such as TAT and polyarginine, rapidly pass through
the plasma membranes of mammalian cells by an unknown mechanism called
transduction as well as by endocytosis and macropinocytosis. These
cell-penetrating peptides (CPPs) promise to be medically useful when fused to
biologically active peptides. I offer a simple model in which one or more CPPs
and the phosphatidylserines of the inner leaflet form a kind of capacitor with
a voltage in excess of 180 mV, high enough to create a molecular electropore.
The model is consistent with an empirical upper limit on the cargo peptide of
40--60 amino acids and with experimental data on how the transduction of a
polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of
arginines in the CPP and on the CPP concentration. The model makes three
testable predictions.Comment: 15 pages, 5 figure
Non-equilibrium mechanics and dynamics of motor activated gels
The mechanics of cells is strongly affected by molecular motors that generate
forces in the cellular cytoskeleton. We develop a model for cytoskeletal
networks driven out of equilibrium by molecular motors exerting transient
contractile stresses. Using this model we show how motor activity can
dramatically increase the network's bulk elastic moduli. We also show how motor
binding kinetics naturally leads to enhanced low-frequency stress fluctuations
that result in non-equilibrium diffusive motion within an elastic network, as
seen in recent \emph{in vitro} and \emph{in vivo} experiments.Comment: 21 pages, 8 figure
Effective Medium Theory of Filamentous Triangular Lattice
We present an effective medium theory that includes bending as well as
stretching forces, and we use it to calculate mechanical response of a diluted
filamentous triangular lattice. In this lattice, bonds are central-force
springs, and there are bending forces between neighboring bonds on the same
filament. We investigate the diluted lattice in which each bond is present with
a probability . We find a rigidity threshold which has the same value
for all positive bending rigidity and a crossover characterizing bending-,
stretching-, and bend-stretch coupled elastic regimes controlled by the
central-force rigidity percolation point at of the
lattice when fiber bending rigidity vanishes.Comment: 15 pages, 9 figure
Mean encounter times for cell adhesion in hydrodynamic flow: analytical progress by dimensional reduction
For a cell moving in hydrodynamic flow above a wall, translational and
rotational degrees of freedom are coupled by the Stokes equation. In addition,
there is a close coupling of convection and diffusion due to the
position-dependent mobility. These couplings render calculation of the mean
encounter time between cell surface receptors and ligands on the substrate very
difficult. Here we show for a two-dimensional model system how analytical
progress can be achieved by treating motion in the vertical direction by an
effective reaction term in the mean first passage time equation for the
rotational degree of freedom. The strength of this reaction term can either be
estimated from equilibrium considerations or used as a fit parameter. Our
analytical results are confirmed by computer simulations and allow to assess
the relative roles of convection and diffusion for different scaling regimes of
interest.Comment: Reftex, postscript figures include
Mechanics and force transmission in soft composites of rods in elastic gels
We report detailed theoretical investigations of the micro-mechanics and bulk
elastic properties of composites consisting of randomly distributed stiff
fibers embedded in an elastic matrix in two and three dimensions. Recent
experiments published in Physical Review Letters [102, 188303 (2009)] have
suggested that the inclusion of stiff microtubules in a softer, nearly
incompressible biopolymer matrix can lead to emergent compressibility. This can
be understood in terms of the enhancement of the compressibility of the
composite relative to its shear compliance as a result of the addition of stiff
rod-like inclusions. We show that the Poisson's ratio of such a composite
evolves with increasing rod density towards a particular value, or {\em fixed
point}, independent of the material properties of the matrix, so long as it has
a finite initial compressibility. This fixed point is in three
dimensions and in two dimensions. Our results suggest an important
role for stiff filaments such as microtubules and stress fibers in cell
mechanics. At the same time, our work has a wider elasticity context, with
potential applications to composite elastic media with a wide separation of
scales in stiffness of its constituents such as carbon nanotube-polymer
composites, which have been shown to have highly tunable mechanics.Comment: 10 pages, 8 figure
Spontaneous flow transition in active polar gels
We study theoretically the effects of confinement on active polar gels such
as the actin network of eukaryotic cells. Using generalized hydrodynamics
equations derived for active gels, we predict, in the case of quasi
one-dimensional geometry, a spontaneous flow transition from a homogeneously
polarized immobile state for small thicknesses, to a perturbed flowing state
for larger thicknesses. The transition is not driven by an external field but
by the activity of the system. We suggest several possible experimental
realizations.Comment: 7 pages, 3 figures. To appear in Europhys. Let
Nematic and Polar order in Active Filament Solutions
Using a microscopic model of interacting polar biofilaments and motor
proteins, we characterize the phase diagram of both homogeneous and
inhomogeneous states in terms of experimental parameters. The polarity of motor
clusters is key in determining the organization of the filaments in homogeneous
isotropic, polarized and nematic states, while motor-induced bundling yields
spatially inhomogeneous structures.Comment: 4 pages. 3 figure
Rheology of Active Filament Solutions
We study the viscoelasticity of an active solution of polar biofilaments and
motor proteins. Using a molecular model, we derive the constitutive equations
for the stress tensor in the isotropic phase and in phases with liquid
crystalline order. The stress relaxation in the various phases is discussed.
Contractile activity is responsible for a spectacular difference in the
viscoelastic properties on opposite sides of the order-disorder transition.Comment: 4 pages, 1 figur
Bridging the microscopic and the hydrodynamic in active filament solutions
Hydrodynamic equations for an isotropic solution of active polar filaments
are derived from a microscopic mean-field model of the forces exchanged between
motors and filaments. We find that a spatial dependence of the motor stepping
rate along the filament is essential to drive bundle formation. A number of
differences arise as compared to hydrodynamics derived (earlier) from a
mesoscopic model where relative filament velocities were obtained on the basis
of symmetry considerations. Due to the anisotropy of filament diffusion, motors
are capable of generating net filament motion relative to the solvent. The
effect of this new term on the stability of the homogeneous state is
investigated.Comment: 7 pages, 2 figures, submitted to Europhys. Let
Testing Tensile and Shear Epoxy Strength at Cryogenic Temperatures
This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass
- …