10 research outputs found
Biologia Floral y Polinizacion de Algunas Monocotiledoneas de un Bosque Nublado Venezolano
Volume: 82Start Page: 61End Page: 8
Vegetative phenelogy of monocotyledonous in the cloud forest of Rancho Grande (Henri Pittier, National Park, Venezuela).
[email protected] analítica--semestra
Floración y fructificación de monocotiledóneas en un bosque nublado venemlano
La extensión e intensidad de los períodos de floración y fructificación fueron estudiados en 28 especies de monocotiledóneas herbáceas durante 3 aflos en el bosque nublado de Rancho Grande. Los registros detallados muestran cuatro patrones básicos: 1) Un período de floración corto con picos pronunciados. 2) Dos períodos independientes de floración. 3) Un período de floración largo de 6 a 11 meses. 4) Un período de floración continuo durante todo el año. La extensión de los períodos de fructificación se resumen en tres patrones básicos: 1) Un período de fructificación durante todo el afio. 2) La fructificación es de 5 a 8 meses de extensión. 3) Fructificación en un período corto de 4 meses (una especie). La relación entre los períodos de floración y fructificación muestran tres tendencias: máximos desfasados; floración corta y fructificación de 3 a 10 meses de extensión y períodos de floración y fructificación continuos durante el afio. A nivel comunitario, el gremio de las monocotiledóneas herbáceas se caracteriza por presentar un máximo de floración durante junio y un máximo de fructificación en agosto.The length and intensity of flowering and fruiting periods were studied in 28 monocotyledonous herbaeeous species for three years in tbe eloud forest of Rancho Grande, Venezuela. Four basic flowering patteros oceured: 1) One short flowerlng episode witb sharp peaks. 2} Two independent flowering perlods. 3) One long flowerlng perlod 6 lo 11 montbs in lengtb. 4} Continuous flowerlng tbroughout tbe year. The lengtb of fruetifieation periods shows tbree buie pattems: 1) All year long, 2) Perlods from S lo 8 montbs. 3) Period of 4 montbs (oo1y one speeies). The following tendencies evident when flowerlng and fruiting perlods are related: peaka are dephased¡ a short flowerlng perlocl witb IQng fruetifieation periods lasting from 3 lo 10 montbs and even some species have flowerlng and fruetifieation all year. The group as whole shows a flowerlng pesJc in Iuly, while the fruiting peak oeeurs in August
Early stage litter decomposition across biomes
© 2018 Elsevier B.V. Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from −9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed
Neuroendocrine mechanism in pregnancy and parturition
The complex mechanisms controlling human parturition involves mother, fetus, and placenta, and stress is a key element activating a series of physiological adaptive responses. Preterm birth is a clinical syndrome that shares several characteristics with term birth. A major role for the neuroendocrine mechanisms has been proposed, and placenta/membranes are sources for neurohormones and peptides. Oxytocin (OT) is the neurohormone whose major target is uterine contractility and placenta represents a novel source that contributes to the mechanisms of parturition. The CRH/urocortin (Ucn) family is another important neuroendocrine pathway involved in term and preterm birth. The CRH/Ucn family consists of four ligands: CRH, Ucn, Ucn2, and Ucn3. These peptides have a pleyotropic function and are expressed by human placenta and fetal membranes. Uterine contractility, blood vessel tone, and immune function are influenced by CRH/Ucns during pregnancy and undergo major changes at parturition. Among the others, neurohormones, relaxin, parathyroid hormone-related protein, opioids, neurosteroids, and monoamines are expressed and secreted from placental tissues at parturition. Preterm birth is the consequence of a premature and sustained activation of endocrine and immune responses. A preterm birth evidence for a premature activation of OT secretion as well as increased maternal plasma CRH levels suggests a pathogenic role of these neurohormones. A decrease of maternal serum CRH-binding protein is a concurrent event. At midgestation, placental hypersecretion of CRH or Ucn has been proposed as a predictive marker of subsequent preterm delivery. While placenta represents the major source for CRH, fetus abundantly secretes Ucn and adrenal dehydroepiandrosterone in women with preterm birth. The relevant role of neuroendocrine mechanisms in preterm birth is sustained by basic and clinic implication
Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomised, double-masked, phase 3, non-inferiority trials
Background: Faricimab is a bispecific antibody that acts through dual inhibition of both angiopoietin-2 and vascular endothelial growth factor A. We report primary results of two phase 3 trials evaluating intravitreal faricimab with extension up to every 16 weeks for neovascular age-related macular degeneration (nAMD).
Methods: TENAYA and LUCERNE were randomised, double-masked, non-inferiority trials across 271 sites worldwide. Treatment-naive patients with nAMD aged 50 years or older were randomly assigned (1:1) to intravitreal faricimab 6·0 mg up to every 16 weeks, based on protocol-defined disease activity assessments at weeks 20 and 24, or aflibercept 2·0 mg every 8 weeks. Randomisation was performed through an interactive voice or web-based response system using a stratified permuted block randomisation method. Patients, investigators, those assessing outcomes, and the funder were masked to group assignments. The primary endpoint was mean change in best-corrected visual acuity (BCVA) from baseline averaged over weeks 40, 44, and 48 (prespecified non-inferiority margin of four letters), in the intention-to-treat population. Safety analyses included patients who received at least one dose of study treatment. These trials are registered with ClinicalTrials.gov (TENAYA NCT03823287 and LUCERNE NCT03823300).
Findings: Across the two trials, 1329 patients were randomly assigned between Feb 19 and Nov 19, 2019 (TENAYA n=334 faricimab and n=337 aflibercept), and between March 11 and Nov 1, 2019 (LUCERNE n=331 faricimab and n=327 aflibercept). BCVA change from baseline with faricimab was non-inferior to aflibercept in both TENAYA (adjusted mean change 5·8 letters [95% CI 4·6 to 7·1] and 5·1 letters [3·9 to 6·4]; treatment difference 0·7 letters [-1·1 to 2·5]) and LUCERNE (6·6 letters [5·3 to 7·8] and 6·6 letters [5·3 to 7·8]; treatment difference 0·0 letters [-1·7 to 1·8]). Rates of ocular adverse events were comparable between faricimab and aflibercept (TENAYA n=121 [36·3%] vs n=128 [38·1%], and LUCERNE n=133 [40·2%] vs n=118 [36·2%]).
Interpretation: Visual benefits with faricimab given at up to 16-week intervals demonstrates its potential to meaningfully extend the time between treatments with sustained efficacy, thereby reducing treatment burden in patients with nAMD
Early stage litter decomposition across biomes
Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from −9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed.This work was performed within the TeaComposition initiative, carried out by 190 institutions worldwide. We thank Gabrielle Drozdowski for her help with the packaging and shipping of tea, Zora Wessely and Johannes Spiegel for the creative implementation of the acknowledgement card, Josip Dusper for creative implementation of the graphical abstract, Christine Brendle for the GIS editing, and Marianne Debue for her help with the data cleaning. Further acknowledgements go to Adriana Principe, Melanie Köbel, Pedro Pinho, Thomas Parker, Steve Unger, Jon Gewirtzman and Margot McKleeven for the implementation of the study at their respective sites. We are very grateful to UNILEVER for sponsoring the Lipton tea bags and to the COST action ClimMani for scientific discussions, adoption and support to the idea of TeaComposition as a common metric. The initiative was supported by the following grants: ILTER Initiative Grant, ClimMani Short-Term Scientific Missions Grant (COST action ES1308; COST-STSM-ES1308-36004; COST-STM-ES1308-39006; ES1308-231015-068365), INTERACT (EU H2020 Grant No. 730938), and Austrian Environment Agency (UBA). Franz Zehetner acknowledges the support granted by the Prometeo Project of Ecuador's Secretariat of Higher Education, Science, Technology and Innovation (SENESCYT) as well as Charles Darwin Foundation for the Galapagos Islands (2190). Ana I. Sousa, Ana I. Lillebø and Marta Lopes thanks for the financial support to CESAM (UID/AMB/50017), to FCT/MEC through national funds (PIDDAC), and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020. The research was also funded by the Portuguese Foundation for Science and Technology, FCT, through SFRH/BPD/107823/2015 (A.I. Sousa), co-funded by POPH/FSE. Thomas Mozdzer thanks US National Science Foundation NSF DEB-1557009. Helena C. Serrano thanks Fundação para a Ciência e Tecnologia (UID/BIA/00329/2013). Milan Barna acknowledges Scientific Grant Agency VEGA (2/0101/18). Anzar A Khuroo acknowledges financial support under HIMADRI project from SAC-ISRO, India