12 research outputs found
Mapping of Genetic Abnormalities of Primary Tumours from Metastatic CRC by High-Resolution SNP Arrays
This is an open-access article distributed under the terms of the Creative Commons Attribution License.-- et al.[Background]: For years, the genetics of metastatic colorectal cancer (CRC) have been studied using a variety of techniques. However, most of the approaches employed so far have a relatively limited resolution which hampers detailed characterization of the common recurrent chromosomal breakpoints as well as the identification of small regions carrying genetic changes and the genes involved in them.
[Methodology/Principal Findings]: Here we applied 500K SNP arrays to map the most common chromosomal lesions present at diagnosis in a series of 23 primary tumours from sporadic CRC patients who had developed liver metastasis. Overall our results confirm that the genetic profile of metastatic CRC is defined by imbalanced gains of chromosomes 7, 8q, 11q, 13q, 20q and X together with losses of the 1p, 8p, 17p and 18q chromosome regions. In addition, SNP-array studies allowed the identification of small (1.5 Mb) altered DNA sequences, many of which contain cancer genes known to be involved in CRC and the metastatic process. Detailed characterization of the breakpoint regions for the altered chromosomes showed four recurrent breakpoints at chromosomes 1p12, 8p12, 17p11.2 and 20p12.1; interestingly, the most frequently observed recurrent chromosomal breakpoint was localized at 17p11.2 and systematically targeted the FAM27L gene, whose role in CRC deserves further investigations.
[Conclusions/Significance]: In summary, in the present study we provide a detailed map of the genetic abnormalities of primary tumours from metastatic CRC patients, which confirm and extend on previous observations as regards the identification of genes potentially involved in development of CRC and the metastatic process.This work has been partially supported by grants from the Consejeria de Sanidad, Junta de Castilla y Leon, Valladolid, Spain (SAN191/SA09/06 and SAN673/SA39/08), Fundacion Memoria de Don Samuel Solorzano Barruso, Salamanca, Spain, Caja de Burgos (Obra Social), Burgos, Spain, Grupo Excelencia de Castilla y Leon (GR37) and the RTICC from the Instituto de Salud Carlos III (ISCIII), Ministerio de Ciencia e Innovacion, Madrid, Spain (RD06/0020/0035-FEDER). JM Sayagués, M Gonzalez, ME Sarasquete and MC Chillon are supported by grants (CP05/00321, FI08/00721, CA08/00212 and CA/07/00077, respectively) from the ISCIII, Ministerio de Ciencia e Innovación, Madrid, Spain. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe
Comparison of next-generation sequencing (NGS) and next-generation flow (NGF) for minimal residual disease (MRD) assessment in multiple myeloma
Detecting persistent minimal residual disease (MRD) allows the identification of patients with an increased risk of relapse and death. In this study, we have evaluated MRD 3 months after transplantation in 106 myeloma patients using a commercial next-generation sequencing (NGS) strategy (LymphoTrackÂź), and compared the results with next-generation flow (NGF, EuroFlow). The use of different marrow pulls and the need of concentrating samples for NGS biased the applicability for MRD evaluation and favored NGF. Despite that, correlation between NGS and NGF was high (R = 0.905). The 3-year progression-free survival (PFS) rates by NGS and NGF were longer for undetectable vs. positive patients (NGS: 88.7% vs. 56.6%; NGF: 91.4% vs. 50%; p < 0.001 for both comparisons), which resulted in a 3-year overall survival (OS) advantage (NGS: 96.2% vs. 77.3%; NGF: 96.6% vs. 74.9%, p < 0.01 for both comparisons). In the Cox regression model, NGS and NGF negativity had similar results but favoring the latter in PFS (HR: 0.20, 95% CI: 0.09-0.45, p < 0.001) and OS (HR: 0.21, 95% CI: 0.06-0.75, p = 0.02). All these results reinforce the role of MRD detection by different strategies in patient prognosis and highlight the use of MRD as an endpoint for multiple myeloma treatment
Is CFTR 621+3 A > G a cystic fibrosis causing mutation?
The 621+3 A>G variant of the CFTR gene was initially detected in four Greek patients with a severe form of cystic fibrosis, and it is reported to impair CFTR mRNA splicing. We present three lines of evidence that argue against the pathogenicity of this variant. First, its allelic frequency in the Italian population was 0.4%. Even considering the lowest value in the confidence interval we would expect 10% of Italian CF patients to be heterozygotes for this variant, whereas it has been reported only in one patient (0.04% of Italian CF patients). Second, expression of the 621+3 A>G variant in HeLa cells using a hybrid minigene showed that 39.5+/-1.1% of transcripts were correctly spliced, indicating that its effects on mRNA splicing are similar to those of the CFTR intron 8 5T variant, associated with congenital bilateral absence of vas deferens (CBAVD), but not with CF. Third, we have identified an asymptomatic individual who harbored the 621+3 A>G variant in trans with the Q552X mutation. Because 621+3 A>G is often included in population-screening programs, this information is critical to provide adequate counseling to patients. Further work should be aimed at investigating whether this variant may have a role in CBAVD or atypical CF
An integrated DEMâFEM approach to study breakage in packing of glass cartridges on a conveyor belt
Protocol of an Interdisciplinary and Multidimensional Assessment of Pollution Reduction Measures in Urban Areas: MobilAir Project
International audienceMobility is a major source of greenhouse gas emissions. At the same time, urban air pollution is a major public health issue in both North and South countries. This project aims to show the synergies between short-term public health issues related to pollution and the reduction of greenhouse gas emissions. MobilAir, in a fundamentally interdisciplinary approach, aims to identify specific measures to significantly reduce urban air pollution and its impacts. Building on the multidisciplinary richness of the Grenoble campus, MobilAir will develop an integrated approach in the Grenoble urban area, a relevant pilot area. MobilAir aims to develop methods and tools that can be replicated in other cities in France or abroad. Specifically, MobilAir has three main objectives: (1) A better comprehension of the populationâs exposure to pollution; (2) A detailed understanding of the determinants of mobility behaviour and (3) Support for public decision-making
Chronic kidney disease and neurological disorders: are uraemic toxins the missing piece of the puzzle?
International audienceAbstract Chronic kidney disease (CKD) perturbs the crosstalk with others organs, with the interaction between the kidneys and the heart having been studied most intensively. However, a growing body of data indicates that there is an association between kidney dysfunction and disorders of the central nervous system. In epidemiological studies, CKD is associated with a high prevalence of neurological complications, such as cerebrovascular disorders, movement disorders, cognitive impairment and depression. Along with traditional cardiovascular risk factors (such as diabetes, inflammation, hypertension and dyslipidaemia), non-traditional risk factors related to kidney damage (such as uraemic toxins) may predispose patients with CKD to neurological disorders. There is increasing evidence to show that uraemic toxins, for example indoxyl sulphate, have a neurotoxic effect. A better understanding of factors responsible for the elevated prevalence of neurological disorders among patients with CKD might facilitate the development of novel treatments. Here, we review (i) the potential clinical impact of CKD on cerebrovascular and neurological complications, (ii) the mechanisms underlying the uraemic toxinsâ putative action (based on pre-clinical and clinical research) and (iii) the potential impact of these findings on patient care
Acidosis, cognitive dysfunction and motor impairments in patients with kidney disease
International audienceMetabolic acidosis, defined as a plasma or serum bicarbonate concentration <22 mmol/L, is a frequent consequence of chronic kidney disease (CKD) and occurs in ~10â30% of patients with advanced stages of CKD. Likewise, in patients with a kidney transplant, prevalence rates of metabolic acidosis range from 20% to 50%. CKD has recently been associated with cognitive dysfunction, including mild cognitive impairment with memory and attention deficits, reduced executive functions and morphological damage detectable with imaging. Also, impaired motor functions and loss of muscle strength are often found in patients with advanced CKD, which in part may be attributed to altered central nervous system (CNS) functions. While the exact mechanisms of how CKD may cause cognitive dysfunction and reduced motor functions are still debated, recent data point towards the possibility that acidosis is one modifiable contributor to cognitive dysfunction. This review summarizes recent evidence for an association between acidosis and cognitive dysfunction in patients with CKD and discusses potential mechanisms by which acidosis may impact CNS functions. The review also identifies important open questions to be answered to improve prevention and therapy of cognitive dysfunction in the setting of metabolic acidosis in patients with CKD