7,600 research outputs found
Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions
Motivated by the prospect of constraining microscopic models, we calculate
the exact one-loop corrected de Sitter entropy (the logarithm of the sphere
partition function) for every effective field theory of quantum gravity, with
particles in arbitrary spin representations. In doing so, we universally relate
the sphere partition function to the quotient of a quasi-canonical bulk and a
Euclidean edge partition function, given by integrals of characters encoding
the bulk and edge spectrum of the observable universe. Expanding the bulk
character splits the bulk (entanglement) entropy into quasinormal mode
(quasiqubit) contributions. For 3D higher-spin gravity formulated as an sl()
Chern-Simons theory, we obtain all-loop exact results. Further to this, we show
that the theory has an exponentially large landscape of de Sitter vacua with
quantum entropy given by the absolute value squared of a topological string
partition function. For generic higher-spin gravity, the formalism succinctly
relates dS, AdS and conformal results. Holography is exhibited in
quasi-exact bulk-edge cancelation.Comment: 9 + 47 + N page
Low energy laser light (632.8 nm) suppresses amyloid-β peptide-induced oxidative and inflammatory responses in astrocytes
Oxidative stress and inflammation are important processes in the progression of Alzheimer's disease (AD). Recent studies have implicated the role of amyloid β-peptides (Aβ) in mediating these processes. In astrocytes, oligomeric Aβ induces the assembly of NADPH oxidase complexes resulting in its activation to produce anionic superoxide. Aβ also promotes production of pro-inflammatory factors in astrocytes. Since low energy laser has previously been reported to attenuate oxidative stress and inflammation in biological systems, the objective of this study was to examine whether this type of laser light was able to abrogate the oxidative and inflammatory responses induced by Aβ. Primary rat astrocytes were exposed to Helium-Neon laser (λ=632.8 nm), followed by the treatment with oligomeric Aβ. Primary rat astrocytes were used to measure Aβ-induced production of superoxide anions using fluorescence microscopy of dihydroethidium (DHE), assembly of NADPH oxidase subunits by the colocalization between the cytosolic p47phox subunit and the membrane gp91phox subunit using fluorescent confocal microscopy, phosphorylation of cytosolic phospholipase A2 (cPLA2), and expressions of pro-inflammatory factors including interleukin-1β (IL-1β) and inducible nitric-oxide synthase (iNOS) using Western blot Analysis. Our data showed that laser light at 632.8 nm suppressed Aβ-induced superoxide production, colocalization between NADPH oxidase gp91phox and p47phox subunits, phosphorylation of cPLA2, and the expressions of IL-1β and iNOS in primary astrocytes. We demonstrated for the first time that 632.8 nm laser was capable of suppressing cellular pathways of oxidative stress and inflammatory responses critical in the pathogenesis in AD. This study should prove to provide the groundwork for further investigations for the potential use of laser therapy as a treatment for AD
Low energy laser light (632.8 nm) suppresses amyloid-β peptide-induced oxidative and inflammatory responses in astrocytes
Oxidative stress and inflammation are important processes in the progression of Alzheimer's disease (AD). Recent studies have implicated the role of amyloid β-peptides (Aβ) in mediating these processes. In astrocytes, oligomeric Aβ induces the assembly of NADPH oxidase complexes resulting in its activation to produce anionic superoxide. Aβ also promotes production of pro-inflammatory factors in astrocytes. Since low energy laser has previously been reported to attenuate oxidative stress and inflammation in biological systems, the objective of this study was to examine whether this type of laser light was able to abrogate the oxidative and inflammatory responses induced by Aβ. Primary rat astrocytes were exposed to Helium-Neon laser (λ=632.8 nm), followed by the treatment with oligomeric Aβ. Primary rat astrocytes were used to measure Aβ-induced production of superoxide anions using fluorescence microscopy of dihydroethidium (DHE), assembly of NADPH oxidase subunits by the colocalization between the cytosolic p47phox subunit and the membrane gp91phox subunit using fluorescent confocal microscopy, phosphorylation of cytosolic phospholipase A2 (cPLA2), and expressions of pro-inflammatory factors including interleukin-1β (IL-1β) and inducible nitric-oxide synthase (iNOS) using Western blot Analysis. Our data showed that laser light at 632.8 nm suppressed Aβ-induced superoxide production, colocalization between NADPH oxidase gp91phox and p47phox subunits, phosphorylation of cPLA2, and the expressions of IL-1β and iNOS in primary astrocytes. We demonstrated for the first time that 632.8 nm laser was capable of suppressing cellular pathways of oxidative stress and inflammatory responses critical in the pathogenesis in AD. This study should prove to provide the groundwork for further investigations for the potential use of laser therapy as a treatment for AD
Jamming in complex networks with degree correlation
We study the effects of the degree-degree correlations on the pressure
congestion J when we apply a dynamical process on scale free complex networks
using the gradient network approach. We find that the pressure congestion for
disassortative (assortative) networks is lower (bigger) than the one for
uncorrelated networks which allow us to affirm that disassortative networks
enhance transport through them. This result agree with the fact that many real
world transportation networks naturally evolve to this kind of correlation. We
explain our results showing that for the disassortative case the clusters in
the gradient network turn out to be as much elongated as possible, reducing the
pressure congestion J and observing the opposite behavior for the assortative
case. Finally we apply our model to real world networks, and the results agree
with our theoretical model
Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (–)-epigallocatechin-3-gallate
Excessive production of Aβ (amyloid β-peptide) has been shown to play an important role in the pathogenesis of AD (Alzheimer's disease). Although not yet well understood, aggregation of Aβ is known to cause toxicity to neurons. Our recent study demonstrated the ability for oligomeric Aβ to stimulate the production of ROS (reactive oxygen species) in neurons through an NMDA (N-methyl-d-aspartate)-dependent pathway. However, whether prolonged exposure of neurons to aggregated Aβ is associated with impairment of NMDA receptor function has not been extensively investigated. In the present study, we show that prolonged exposure of primary cortical neurons to Aβ oligomers caused mitochondrial dysfunction, an attenuation of NMDA receptor-mediated Ca2+ influx and inhibition of NMDA-induced AA (arachidonic acid) release. Mitochondrial dysfunction and the decrease in NMDA receptor activity due to oligomeric Aβ are associated with an increase in ROS production. Gp91ds-tat, a specific peptide inhibitor of NADPH oxidase, and Mn(III)-tetrakis(4-benzoic acid)-porphyrin chloride, an ROS scavenger, effectively abrogated Aβ-induced ROS production. Furthermore, Aβ-induced mitochondrial dysfunction, impairment of NMDA Ca2+ influx and ROS production were prevented by pre-treatment of neurons with EGCG [(−)-epigallocatechin-3-gallate], a major polyphenolic component of green tea. Taken together, these results support a role for NADPH oxidase-mediated ROS production in the cytotoxic effects of Aβ, and demonstrate the therapeutic potential of EGCG and other dietary polyphenols in delaying onset or retarding the progression of AD
GDA: Generalized Diffusion for Robust Test-time Adaptation
Machine learning models struggle with generalization when encountering
out-of-distribution (OOD) samples with unexpected distribution shifts. For
vision tasks, recent studies have shown that test-time adaptation employing
diffusion models can achieve state-of-the-art accuracy improvements on OOD
samples by generating new samples that align with the model's domain without
the need to modify the model's weights. Unfortunately, those studies have
primarily focused on pixel-level corruptions, thereby lacking the
generalization to adapt to a broader range of OOD types. We introduce
Generalized Diffusion Adaptation (GDA), a novel diffusion-based test-time
adaptation method robust against diverse OOD types. Specifically, GDA
iteratively guides the diffusion by applying a marginal entropy loss derived
from the model, in conjunction with style and content preservation losses
during the reverse sampling process. In other words, GDA considers the model's
output behavior with the semantic information of the samples as a whole, which
can reduce ambiguity in downstream tasks during the generation process.
Evaluation across various popular model architectures and OOD benchmarks shows
that GDA consistently outperforms prior work on diffusion-driven adaptation.
Notably, it achieves the highest classification accuracy improvements, ranging
from 4.4\% to 5.02\% on ImageNet-C and 2.5\% to 7.4\% on Rendition, Sketch, and
Stylized benchmarks. This performance highlights GDA's generalization to a
broader range of OOD benchmarks
Current-Driven Magnetization Dynamics in Magnetic Multilayers
We develop a quantum analog of the classical spin-torque model for
current-driven magnetic dynamics. The current-driven magnetic excitation at
finite field becomes significantly incoherent. This excitation is described by
an effective magnetic temperature rather than a coherent precession as in the
spin-torque model. However, both the spin-torque and effective temperature
approximations give qualitatively similar switching diagrams in the
current-field coordinates, showing the need for detailed experiments to
establish the proper physical model for current-driven dynamics.Comment: 5 pages, 2 figure
Magnetization dynamics with a spin-transfer torque
The magnetization reversal and dynamics of a spin valve pillar, whose lateral
size is 6464 nm, are studied by using micromagnetic simulation in
the presence of spin transfer torque. Spin torques display both characteristics
of magnetic damping (or anti-damping) and of an effective magnetic field. For a
steady-state current, both M-I and M-H hysteresis loops show unique features,
including multiple jumps, unusual plateaus and precessional states. These
states originate from the competition between the energy dissipation due to
Gilbert damping and the energy accumulation due to the spin torque supplied by
the spin current. The magnetic energy oscillates as a function of time even for
a steady-state current. For a pulsed current, the minimum width and amplitude
of the spin torque for achieving current-driven magnetization reversal are
quantitatively determined. The spin torque also shows very interesting thermal
activation that is fundamentally different from an ordinary damping effect.Comment: 15 figure
- …