31 research outputs found

    Case Report: Sapien 3 Transcatheter Heart Valve Embolization: Cause, Management, and Redo

    Get PDF
    The transcatheter heart valve (THV) embolization is a rare but challenging complication in transcatheter aortic valve implantation (TAVI). We report the case of an 81-year-old man with Sapien 3 embolization caused by interrupted rapid pacing. In this setting, we describe the embolized THV management and the technique of the second Sapien 3 implantation

    Right vs. left ventricular longitudinal strain for mortality prediction after transcatheter aortic valve implantation

    Get PDF
    IntroductionThis study aims at exploring biventricular remodelling and its implications for outcome in a representative patient cohort with severe aortic stenosis (AS) undergoing transcatheter aortic valve implantation (TAVI).Methods and resultsPre-interventional echocardiographic examinations of 100 patients with severe AS undergoing TAVI were assessed by speckle tracking echocardiography of both ventricles. Association with mortality was determined for right ventricular global longitudinal strain (RVGLS), RV free wall strain (RVFWS) and left ventricular global longitudinal strain (LVGLS). During a median follow-up of 1,367 [959–2,123] days, 33 patients (33%) died. RVGLS was lower in non-survivors [−13.9% (−16.4 to −12.9)] than survivors [−17.1% (−20.2 to −15.2); P = 0.001]. In contrast, LVGLS as well as the conventional parameters LV ejection fraction (LVEF) and RV fractional area change (RVFAC) did not differ (P = ns). Kaplan–Meier analyses indicated a reduced survival probability when RVGLS was below the −14.6% cutpoint (P < 0.001). Lower RVGLS was associated with higher mortality [HR 1.13 (95% CI 1.04–1.23); P = 0.003] independent of LVGLS, LVEF, RVFAC, and EuroSCORE II. Addition of RVGLS clearly improved the fitness of bivariable and multivariable models including LVGLS, LVEF, RVFAC, and EuroSCORE II with potential incremental value for mortality prediction. In contrast, LVGLS, LVEF, and RVFAC were not associated with mortality.DiscussionIn patients with severe AS undergoing TAVI, RVGLS but not LVGLS was reduced in non-survivors compared to survivors, differentiated non-survivors from survivors, was independently associated with mortality, and exhibited potential incremental value for outcome prediction. RVGLS appears to be more suitable than LVGLS for risk stratification in AS and timely valve replacement

    Assessing the level of radiation experienced by anesthesiologists during transfemoral Transcatheter Aortic Valve Implantation and protection by a lead cap

    Get PDF
    OBJECTIVE Transfemoral Transcatheter Aortic Valve Implantation (TAVI) has become a standard therapy for patients with aortic valve stenosis. Fluoroscopic imaging is essential for TAVI with the anesthesiologist's workplace close to patient's head side. While the use of lead-caps has been shown to be useful for interventional cardiologists, data are lacking for anesthesiologists. METHODS A protective cap with a 0.35 lead-equivalent was worn on 15 working days by one anesthesiologist. Six detectors (three outside, three inside) were analyzed to determine the reduction of radiation. Literature search was conducted between April and October 2018. RESULTS In the observational period, 32 TAVI procedures were conducted. A maximum radiation dose of 0.55 mSv was detected by the dosimeters at the outside of the cap. The dosimeters inside the cap, in contrast, displayed a constant radiation dose of 0.08 mSv. CONCLUSION The anesthesiologist's head is exposed to significant radiation during TAVI and it can be protected by wearing a lead-cap

    Aortic valve calcification scoring with computed tomography: impact of iterative reconstruction techniques

    Full text link
    To investigate whether image reconstruction with iterative reconstruction (IR) affects aortic valve calcification (AVC) scoring and likelihood categorization of severe aortic stenosis (AS). In this IRB-approved retrospective study, we included 100 consecutive patients with AS (40 females; mean age 77 ± 10 years; age range: 36-99 years) undergoing CT prior to transcatheter aortic valve replacement. Non-enhanced, electrocardiography-gated CT of the heart was reconstructed with filtered back projection (FBP) and with advanced modeled IR at strength levels 1-5. AVC Agatston scores were calculated and gender-specific cut-off values for AS likelihood categorization were applied according to current European Society of Cardiology recommendations (from unlikely to very likely). Friedman test with post-hoc Bonferroni correction was applied to analyze interval- and ordinal-scaled data. Compared to FBP, each IR strength level produced significantly different AVC Agatston scores (p < 0.001-0.002). Median AVC Agatston score for image reconstruction with FBP was 2527 (IQR: 1711-3663) and decreased with increasing IR strength levels up to 2281 (IQR: 1471-3357) at strength level 5. Likelihood categorization of severe AS was significantly different among image reconstruction algorithms (p < 0.001). Image reconstruction with IR strength level 5 led to a downward shift of likelihood categorization in 28 patients (28%) compared to images reconstructed with FBP. IR significantly impacts AVC scoring with significantly decreasing AVC scores with increasing IR strength levels. This leads to relevant changes in likelihood categorization of patients with severe AS., leading to underestimation of severe AS

    Cardiac Virtual Noncontrast Images for Calcium Quantification with Photon-counting Detector CT

    Full text link
    PURPOSE: To assess the accuracy of aortic valve calcium (AVC), mitral annular calcium (MAC), and coronary artery calcium (CAC) quantification and risk stratification using virtual noncontrast (VNC) images from late enhancement photon-counting detector CT as compared with true noncontrast images. MATERIALS AND METHODS: This retrospective, institutional review board-approved study evaluated patients undergoing photon-counting detector CT between January and September 2022. VNC images were reconstructed from late enhancement cardiac scans at 60, 70, 80, and 90 keV using quantum iterative reconstruction (QIR) strengths of 2-4. AVC, MAC, and CAC were quantified on VNC images and compared with quantification of AVC, MAC, and CAC on true noncontrast images using Bland-Altman analyses, regression models, intraclass correlation coefficients (ICC), and Wilcoxon tests. Agreement between severe aortic stenosis likelihood categories and CAC risk categories determined from VNC and true noncontrast images was assessed by weighted κ analysis. RESULTS: Ninety patients were included (mean age, 80 years ± 8 [SD]; 49 male patients). Scores were similar on true noncontrast images and VNC images at 80 keV for AVC and MAC, regardless of QIR strengths, and VNC images at 70 keV with QIR 4 for CAC (all P > .05). The best results were achieved using VNC images at 80 keV with QIR 4 for AVC (mean difference, 3; ICC = 0.992; r = 0.98) and MAC (mean difference, 6; ICC = 0.998; r = 0.99), and VNC images at 70 keV with QIR 4 for CAC (mean difference, 28; ICC = 0.996; r = 0.99). Agreement between calcification categories was excellent on VNC images at 80 keV for AVC (κ = 0.974) and on VNC images at 70 keV for CAC (κ = 0.967). CONCLUSION: VNC images from cardiac photon-counting detector CT enables patient risk stratification and accurate quantification of AVC, MAC, and CAC.Keywords: Coronary Arteries, Aortic Valve, Mitral Valve, Aortic Stenosis, Calcifications, Photon-counting Detector CT Supplemental material is available for this article © RSNA, 2023
    corecore