78 research outputs found

    Higher correlations, universal distributions and finite size scaling in the field theory of depinning

    Full text link
    Recently we constructed a renormalizable field theory up to two loops for the quasi-static depinning of elastic manifolds in a disordered environment. Here we explore further properties of the theory. We show how higher correlation functions of the displacement field can be computed. Drastic simplifications occur, unveiling much simpler diagrammatic rules than anticipated. This is applied to the universal scaled width-distribution. The expansion in d=4-epsilon predicts that the scaled distribution coincides to the lowest orders with the one for a Gaussian theory with propagator G(q)=1/q^(d+2 \zeta), zeta being the roughness exponent. The deviations from this Gaussian result are small and involve higher correlation functions, which are computed here for different boundary conditions. Other universal quantities are defined and evaluated: We perform a general analysis of the stability of the fixed point. We find that the correction-to-scaling exponent is omega=-epsilon and not -epsilon/3 as used in the analysis of some simulations. A more detailed study of the upper critical dimension is given, where the roughness of interfaces grows as a power of a logarithm instead of a pure power.Comment: 15 pages revtex4. See also preceding article cond-mat/030146

    Functional renormalization group for anisotropic depinning and relation to branching processes

    Full text link
    Using the functional renormalization group, we study the depinning of elastic objects in presence of anisotropy. We explicitly demonstrate how the KPZ-term is always generated, even in the limit of vanishing velocity, except where excluded by symmetry. We compute the beta-function to one loop taking properly into account the non-analyticity. This gives rise to additional terms, missed in earlier studies. A crucial question is whether the non-renormalization of the KPZ-coupling found at 1-loop order extends beyond the leading one. Using a Cole-Hopf-transformed theory we argue that it is indeed uncorrected to all orders. The resulting flow-equations describe a variety of physical situations. A careful analysis of the flow yields several non-trivial fixed points. All these fixed points are transient since they possess one unstable direction towards a runaway flow, which leaves open the question of the upper critical dimension. The runaway flow is dominated by a Landau-ghost-mode. For SR elasticity, using the Cole-Hopf transformed theory we identify a non-trivial 3-dimensional subspace which is invariant to all orders and contains all above fixed points as well as the Landau-mode. It belongs to a class of theories which describe branching and reaction-diffusion processes, of which some have been mapped onto directed percolation.Comment: 20 pages, 30 figures, revtex

    2-loop Functional Renormalization Group Theory of the Depinning Transition

    Full text link
    We construct the field theory which describes the universal properties of the quasi-static isotropic depinning transition for interfaces and elastic periodic systems at zero temperature, taking properly into account the non-analytic form of the dynamical action. This cures the inability of the 1-loop flow-equations to distinguish between statics and quasi-static depinning, and thus to account for the irreversibility of the latter. We prove two-loop renormalizability, obtain the 2-loop beta-function and show the generation of "irreversible" anomalous terms, originating from the non-analytic nature of the theory, which cause the statics and driven dynamics to differ at 2-loop order. We obtain the roughness exponent zeta and dynamical exponent z to order epsilon^2. This allows to test several previous conjectures made on the basis of the 1-loop result. First it demonstrates that random-field disorder does indeed attract all disorder of shorter range. It also shows that the conjecture zeta=epsilon/3 is incorrect, and allows to compute the violations, as zeta=epsilon/3 (1 + 0.14331 epsilon), epsilon=4-d. This solves a longstanding discrepancy with simulations. For long-range elasticity it yields zeta=epsilon/3 (1 + 0.39735 epsilon), epsilon=2-d (vs. the standard prediction zeta=1/3 for d=1), in reasonable agreement with the most recent simulations. The high value of zeta approximately 0.5 found in experiments both on the contact line depinning of liquid Helium and on slow crack fronts is discussed.Comment: 32 pages, 17 figures, revtex

    First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon

    Full text link
    We report the first measurement of coherent elastic neutrino-nucleus scattering (\cevns) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer \cevns over the background-only null hypothesis with greater than 3σ3\sigma significance. The measured cross section, averaged over the incident neutrino flux, is (2.2 ±\pm 0.7) ×\times1039^{-39} cm2^2 -- consistent with the standard model prediction. The neutron-number dependence of this result, together with that from our previous measurement on CsI, confirms the existence of the \cevns process and provides improved constraints on non-standard neutrino interactions.Comment: 8 pages, 5 figures with 2 pages, 6 figures supplementary material V3: fixes to figs 3,4 V4: fix typo in table 1, V5: replaced missing appendix, V6: fix Eq 1, new fig 3, V7 final version, updated with final revision

    Scaling properties of driven interfaces in disordered media

    Full text link
    We perform a systematic study of several models that have been proposed for the purpose of understanding the motion of driven interfaces in disordered media. We identify two distinct universality classes: (i) One of these, referred to as directed percolation depinning (DPD), can be described by a Langevin equation similar to the Kardar-Parisi-Zhang equation, but with quenched disorder. (ii) The other, referred to as quenched Edwards-Wilkinson (QEW), can be described by a Langevin equation similar to the Edwards-Wilkinson equation but with quenched disorder. We find that for the DPD universality class the coefficient λ\lambda of the nonlinear term diverges at the depinning transition, while for the QEW universality class either λ=0\lambda = 0 or λ0\lambda \to 0 as the depinning transition is approached. The identification of the two universality classes allows us to better understand many of the results previously obtained experimentally and numerically. However, we find that some results cannot be understood in terms of the exponents obtained for the two universality classes {\it at\/} the depinning transition. In order to understand these remaining disagreements, we investigate the scaling properties of models in each of the two universality classes {\it above\/} the depinning transition. For the DPD universality class, we find for the roughness exponent αP=0.63±0.03\alpha_P = 0.63 \pm 0.03 for the pinned phase, and αM=0.75±0.05\alpha_M = 0.75 \pm 0.05 for the moving phase. For the growth exponent, we find βP=0.67±0.05\beta_P = 0.67 \pm 0.05 for the pinned phase, and βM=0.74±0.06\beta_M = 0.74 \pm 0.06 for the moving phase. Furthermore, we find an anomalous scaling of the prefactor of the width on the driving force. A new exponent φM=0.12±0.06\varphi_M = -0.12 \pm 0.06, characterizing the scaling of this prefactor, is shown to relate the values of the roughnessComment: Latex manuscript, Revtex 3.0, 15 pages, and 15 figures also available via anonymous ftp from ftp://jhilad.bu.edu/pub/abms/ (128.197.42.52

    The Power Board of the KM3NeT Digital Optical Module: design, upgrade, and production

    Full text link
    The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of 31 three inch photomultiplier tubes distributed over the surface of a 0.44 m diameter pressure-resistant glass sphere. The module includes also calibration instruments and electronics for power, readout and data acquisition. The power board was developed to supply power to all the elements of the digital optical module. The design of the power board began in 2013, and several prototypes were produced and tested. After an exhaustive validation process in various laboratories within the KM3NeT Collaboration, a mass production batch began, resulting in the construction of over 1200 power boards so far. These boards were integrated in the digital optical modules that have already been produced and deployed, 828 until October 2023. In 2017, an upgrade of the power board, to increase reliability and efficiency, was initiated. After the validation of a pre-production series, a production batch of 800 upgraded boards is currently underway. This paper describes the design, architecture, upgrade, validation, and production of the power board, including the reliability studies and tests conducted to ensure the safe operation at the bottom of the Mediterranean Sea throughout the observatory's lifespa

    EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020

    Get PDF
    Welcome to EVALITA 2020! EVALITA is the evaluation campaign of Natural Language Processing and Speech Tools for Italian. EVALITA is an initiative of the Italian Association for Computational Linguistics (AILC, http://www.ai-lc.it) and it is endorsed by the Italian Association for Artificial Intelligence (AIxIA, http://www.aixia.it) and the Italian Association for Speech Sciences (AISV, http://www.aisv.it)
    corecore