52 research outputs found
Constraining the Ratio in TeV Cosmic Rays with Observations of the Moon Shadow by HAWC
An indirect measurement of the antiproton flux in cosmic rays is possible as
the particles undergo deflection by the geomagnetic field. This effect can be
measured by studying the deficit in the flux, or shadow, created by the Moon as
it absorbs cosmic rays that are headed towards the Earth. The shadow is
displaced from the actual position of the Moon due to geomagnetic deflection,
which is a function of the energy and charge of the cosmic rays. The
displacement provides a natural tool for momentum/charge discrimination that
can be used to study the composition of cosmic rays. Using 33 months of data
comprising more than 80 billion cosmic rays measured by the High Altitude Water
Cherenkov (HAWC) observatory, we have analyzed the Moon shadow to search for
TeV antiprotons in cosmic rays. We present our first upper limits on the
fraction, which in the absence of any direct measurements, provide
the tightest available constraints of on the antiproton fraction for
energies between 1 and 10 TeV.Comment: 10 pages, 5 figures. Accepted by Physical Review
Very high energy particle acceleration powered by the jets of the microquasar SS 433
SS 433 is a binary system containing a supergiant star that is overflowing
its Roche lobe with matter accreting onto a compact object (either a black hole
or neutron star). Two jets of ionized matter with a bulk velocity of
extend from the binary, perpendicular to the line of sight, and
terminate inside W50, a supernova remnant that is being distorted by the jets.
SS 433 differs from other microquasars in that the accretion is believed to be
super-Eddington, and the luminosity of the system is erg
s. The lobes of W50 in which the jets terminate, about 40 pc from the
central source, are expected to accelerate charged particles, and indeed radio
and X-ray emission consistent with electron synchrotron emission in a magnetic
field have been observed. At higher energies (>100 GeV), the particle fluxes of
rays from X-ray hotspots around SS 433 have been reported as flux
upper limits. In this energy regime, it has been unclear whether the emission
is dominated by electrons that are interacting with photons from the cosmic
microwave background through inverse-Compton scattering or by protons
interacting with the ambient gas. Here we report TeV -ray observations
of the SS 433/W50 system where the lobes are spatially resolved. The TeV
emission is localized to structures in the lobes, far from the center of the
system where the jets are formed. We have measured photon energies of at least
25 TeV, and these are certainly not Doppler boosted, because of the viewing
geometry. We conclude that the emission from radio to TeV energies is
consistent with a single population of electrons with energies extending to at
least hundreds of TeV in a magnetic field of ~micro-Gauss.Comment: Preprint version of Nature paper. Contacts: S. BenZvi, B. Dingus, K.
Fang, C.D. Rho , H. Zhang, H. Zho
Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC
We present TeV gamma-ray observations of the Crab Nebula, the standard
reference source in ground-based gamma-ray astronomy, using data from the High
Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. In this analysis we use
two independent energy-estimation methods that utilize extensive air shower
variables such as the core position, shower angle, and shower lateral energy
distribution. In contrast, the previously published HAWC energy spectrum
roughly estimated the shower energy with only the number of photomultipliers
triggered. This new methodology yields a much improved energy resolution over
the previous analysis and extends HAWC's ability to accurately measure
gamma-ray energies well beyond 100 TeV. The energy spectrum of the Crab Nebula
is well fit to a log parabola shape with emission up to at least 100 TeV. For the first
estimator, a ground parameter that utilizes fits to the lateral distribution
function to measure the charge density 40 meters from the shower axis, the
best-fit values are
=(2.350.04)10 (TeV cm
s), =2.790.02, and
=0.100.01. For the second estimator, a neural
network which uses the charge distribution in annuli around the core and other
variables, these values are
=(2.310.02)10 (TeV cm
s), =2.730.02, and
=0.060.010.02. The first set of uncertainties are statistical;
the second set are systematic. Both methods yield compatible results. These
measurements are the highest-energy observation of a gamma-ray source to date.Comment: published in Ap
Constraints on the very high energy gamma-ray emission from short GRBs with HAWC
Many gamma-ray bursts (GRBs) have been observed from radio wavelengths, and afew at very-high energies (VHEs, > 100GeV). The HAWC gamma-ray observatory iswell suited to study transient phenomena at VHEs due to its large field of viewand duty cycle. These features allow for searches of VHE emission and can probedifferent model assumptions of duration and spectra. In this paper, we use datacollected by HAWC between December 2014 and May 2020 to search for emission inthe energy range from 80 to 800 GeV coming from a sample 47 short GRBs thattriggered the Fermi, Swift and Konus satellites during this period. Thisanalysis is optimized to search for delayed and extended VHE emission withinthe first 20 s of each burst. We find no evidence of VHE emission, eithersimultaneous or delayed, with respect to the prompt emission. Upper limits (90%confidence level) derived on the GRB fluence are used to constrain thesynchrotron self-Compton forward-shock model. Constraints for the interstellardensity as low as cm are obtained when assuming z=0.3 forbursts with the highest keV-fluences such as GRB 170206A and GRB 181222841.Such a low density makes observing VHE emission mainly from the fast coolingregime challenging.<br
Constraints on the Emission of Gamma-Rays from M31 with HAWC
Cosmic rays, along with stellar radiation and magnetic fields, are known to make up a significant fraction of the energy density of galaxies such as the Milky Way. When cosmic rays interact in the interstellar medium, they produce gamma-ray emission which provides an important indication of how the cosmic rays propagate. Gamma-rays from the Andromeda galaxy (M31), located 785 kpc away, provide a unique opportunity to study cosmic-ray acceleration and diffusion in a galaxy with a structure and evolution very similar to the Milky Way. Using 33 months of data from the High Altitude Water Cherenkov Observatory, we search for teraelectronvolt gamma-rays from the galactic plane of M31. We also investigate past and present evidence of galactic activity in M31 by searching for Fermi bubble-like structures above and below the galactic nucleus. No significant gamma-ray emission is observed, so we use the null result to compute upper limits on the energy density of cosmic rays >10 TeV in M31
First HAWC Observations of the Sun Constrain Steady TeV Gamma-Ray Emission
Steady gamma-ray emission up to at least 200 GeV has been detected from the
solar disk in the Fermi-LAT data, with the brightest, hardest emission
occurring during solar minimum. The likely cause is hadronic cosmic rays
undergoing collisions in the Sun's atmosphere after being redirected from
ingoing to outgoing in magnetic fields, though the exact mechanism is not
understood. An important new test of the gamma-ray production mechanism will
follow from observations at higher energies. Only the High Altitude Water
Cherenkov (HAWC) Observatory has the required sensitivity to effectively probe
the Sun in the TeV range. Using three years of HAWC data from November 2014 to
December 2017, just prior to the solar minimum, we search for 1--100 TeV gamma
rays from the solar disk. No evidence of a signal is observed, and we set
strong upper limits on the flux at a few TeV cm
s at 1 TeV. Our limit, which is the most constraining result on TeV
gamma rays from the Sun, is of the theoretical maximum flux (based
on a model where all incoming cosmic rays produce outgoing photons), which in
turn is comparable to the Fermi-LAT data near 100 GeV. The prospects for a
first TeV detection of the Sun by HAWC are especially high during solar
minimum, which began in early 2018.Comment: 14 pages, 6 figures. See also companion paper 1808.05624. Accepted
for publication in Physical Review
Constraints on Spin-Dependent Dark Matter Scattering with Long-Lived Mediators from TeV Observations of the Sun with HAWC
We analyze the Sun as a source for the indirect detection of dark matter
through a search for gamma rays from the solar disk. Capture of dark matter by
elastic interactions with the solar nuclei followed by annihilation to
long-lived mediators can produce a detectable gamma-ray flux. We search three
years of data from the High Altitude Water Cherenkov Observatory and find no
statistically significant detection of TeV gamma-ray emission from the Sun.
Using this, we constrain the spin-dependent elastic scattering cross section of
dark matter with protons for dark matter masses above 1 TeV, assuming an
unstable mediator with a favorable lifetime. The results complement constraints
obtained from Fermi-LAT observations of the Sun and together cover WIMP masses
between 4 GeV and GeV. The cross section constraints for mediator decays
to gamma rays can be as strong as cm, which is more than
four orders of magnitude stronger than current direct-detection experiments for
1 TeV dark matter mass. The cross-section constraints at higher masses are even
better, nearly 7 orders of magnitude better than the current direct-detection
constraints for 100 TeV dark matter mass. This demonstration of sensitivity
encourages detailed development of theoretical models in light of these
powerful new constraints.Comment: 11 pages, 4 figures. See also companion paper 1808.05620. Accepted
for publication in Physical Review
- …