277 research outputs found
Guillain-Barré syndrome: a century of progress
In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS
Computer Controlled Automated Assay for Comprehensive Studies of Enzyme Kinetic Parameters
Stability and biological activity of proteins is highly dependent on their physicochemical environment. The development of realistic models of biological systems necessitates quantitative information on the response to changes of external conditions like pH, salinity and concentrations of substrates and allosteric modulators. Changes in just a few variable parameters rapidly lead to large numbers of experimental conditions, which go beyond the experimental capacity of most research groups. We implemented a computer-aided experimenting framework (“robot lab assistant”) that allows us to parameterize abstract, human-readable descriptions of micro-plate based experiments with variable parameters and execute them on a conventional 8 channel liquid handling robot fitted with a sensitive plate reader. A set of newly developed R-packages translates the instructions into machine commands, executes them, collects the data and processes it without user-interaction. By combining script-driven experimental planning, execution and data-analysis, our system can react to experimental outcomes autonomously, allowing outcome-based iterative experimental strategies. The framework was applied in a response-surface model based iterative optimization of buffer conditions and investigation of substrate, allosteric effector, pH and salt dependent activity profiles of pyruvate kinase (PYK). A diprotic model of enzyme kinetics was used to model the combined effects of changing pH and substrate concentrations. The 8 parameters of the model could be estimated from a single two-hour experiment using nonlinear least-squares regression. The model with the estimated parameters successfully predicted pH and PEP dependence of initial reaction rates, while the PEP concentration dependent shift of optimal pH could only be reproduced with a set of manually tweaked parameters. Differences between model-predictions and experimental observations at low pH suggest additional protonation-sites at the enzyme or substrates critical for enzymatic activity. The developed framework is a powerful tool to investigate enzyme reaction specifics and explore biological system behaviour in a wide range of experimental conditions
Characterization and simulation of cDNA microarray spots using a novel mathematical model
<p>Abstract</p> <p>Background</p> <p>The quality of cDNA microarray data is crucial for expanding its application to other research areas, such as the study of gene regulatory networks. Despite the fact that a number of algorithms have been suggested to increase the accuracy of microarray gene expression data, it is necessary to obtain reliable microarray images by improving wet-lab experiments. As the first step of a cDNA microarray experiment, spotting cDNA probes is critical to determining the quality of spot images.</p> <p>Results</p> <p>We developed a governing equation of cDNA deposition during evaporation of a drop in the microarray spotting process. The governing equation included four parameters: the surface site density on the support, the extrapolated equilibrium constant for the binding of cDNA molecules with surface sites on glass slides, the macromolecular interaction factor, and the volume constant of a drop of cDNA solution. We simulated cDNA deposition from the single model equation by varying the value of the parameters. The morphology of the resulting cDNA deposit can be classified into three types: a doughnut shape, a peak shape, and a volcano shape. The spot morphology can be changed into a flat shape by varying the experimental conditions while considering the parameters of the governing equation of cDNA deposition. The four parameters were estimated by fitting the governing equation to the real microarray images. With the results of the simulation and the parameter estimation, the phenomenon of the formation of cDNA deposits in each type was investigated.</p> <p>Conclusion</p> <p>This study explains how various spot shapes can exist and suggests which parameters are to be adjusted for obtaining a good spot. This system is able to explore the cDNA microarray spotting process in a predictable, manageable and descriptive manner. We hope it can provide a way to predict the incidents that can occur during a real cDNA microarray experiment, and produce useful data for several research applications involving cDNA microarrays.</p
Somatostatin receptors 2 and 5 are preferentially expressed in proliferating endothelium
Angiogenesis is characterised by activation, migration and proliferation of endothelial cells and is central to the pathology of cancer, cardiovascular disease and chronic inflammation. Somatostatin is an inhibitory polypeptide that acts through five receptors (sst 1, 2, 3, 4, 5). Sst has previously been reported in endothelium, but their role remains obscure. Here, we report the expression of sst in human umbilical vein endothelial cells (HUVECs) in vitro, during proliferation and quiescence. A protocol for culturing proliferating and quiescent HUVECs was established, and verified by analysing cell cycle distribution in propidium-iodide-stained samples using flow cytometry. Sst mRNA was then quantified in nine proliferating and quiescent HUVEC lines using quantitative reverse transcriptase–polymerase chain reaction. Sst 2 and 5 were preferentially expressed in proliferating HUVECs. All samples were negative for sst 4. Sst 1 and 3 expression and cell cycle progression were unrelated. Immunostaining for sst 2 and 5 showed positivity in proliferating but not quiescent cells, confirming sst 2 and 5 protein expression. Inhibition of proliferating cells with somatostatin analogues Octreotide and SOM230, which have sst 5 activity, was found (Octreotide 10−10–10−6 M: 48.5–70.2% inhibition; SOM230 10−9–10−6 M: 44.9–65.4% inhibition) in a dose-dependent manner, suggesting that sst 5 may have functional activity in proliferation. Dynamic changes in sst 2 and 5 expression during the cell cycle and the inhibition of proliferation with specific analogues suggest that these receptors may have a role in angiogenesis
Acquired Type III Secretion System Determines Environmental Fitness of Epidemic Vibrio parahaemolyticus in the Interaction with Bacterivorous Protists
Genome analyses of marine microbial communities have revealed the widespread occurrence of genomic islands (GIs), many of which encode for protein secretion machineries described in the context of bacteria-eukaryote interactions. Yet experimental support for the specific roles of such GIs in aquatic community interactions remains scarce. Here, we test for the contribution of type III secretion systems (T3SS) to the environmental fitness of epidemic Vibrio parahaemolyticus. Comparisons of V. parahaemolyticus wild types and T3SS-defective mutants demonstrate that the T3SS encoded on genome island VPaI-7 (T3SS-2) promotes survival of V. parahaemolyticus in the interaction with diverse protist taxa. Enhanced persistence was found to be due to T3SS-2 mediated cytotoxicity and facultative parasitism of V. parahaemolyticus on coexisting protists. Growth in the presence of bacterivorous protists and the T3SS-2 genotype showed a strong correlation across environmental and clinical isolates of V. parahaemolyticus. Short-term microcosm experiments provide evidence that protistan hosts facilitate the invasion of T3SS-2 positive V. parahaemolyticus into a coastal plankton community, and that water temperature and productivity further promote enhanced survival of T3SS-2 positive V. parahaemolyticus. This study is the first to describe the fitness advantage of GI-encoded functions in a microbial food web, which may provide a mechanistic explanation for the global spread and the seasonal dynamics of V. parahaemolyticus pathotypes, including the pandemic serotype cluster O3:K6, in aquatic environments
A Novel High Throughput Assay for Anthelmintic Drug Screening and Resistance Diagnosis by Real-Time Monitoring of Parasite Motility
Parasitic worms cause untold morbidity and mortality on billions of people and livestock. Drugs are available but resistance is problematic in livestock parasites and is a looming threat for human helminths. Currently, new drug discovery and resistance monitoring is hindered as drug efficacy is assessed by observing motility or development of parasites using laborious, subjective, low-throughput methods evaluated by eye using microscopy. Here we describe a novel application for a cell monitoring device (xCELLigence) that can simply and objectively assess real time anti-parasite efficacy of drugs on eggs, larvae and adults in a fully automated, label-free, high-throughput fashion. This technique overcomes the current low-throughput bottleneck in anthelmintic drug development and resistance detection pipelines. The widespread use of this device to screen for new therapeutics or emerging drug resistance will be an invaluable asset in the fight against human, animal and plant parasitic helminths and other pathogens that plague our planet
Quantitative In Vivo Magnetic Resonance Spectroscopy Using Synthetic Signal Injection
Accurate conversion of magnetic resonance spectra to quantitative units of concentration generally requires compensation for differences in coil loading conditions, the gains of the various receiver amplifiers, and rescaling that occurs during post-processing manipulations. This can be efficiently achieved by injecting a precalibrated, artificial reference signal, or pseudo-signal into the data. We have previously demonstrated, using in vitro measurements, that robust pseudo-signal injection can be accomplished using a second coil, called the injector coil, properly designed and oriented so that it couples inductively with the receive coil used to acquire the data. In this work, we acquired nonlocalized phosphorous magnetic resonance spectroscopy measurements from resting human tibialis anterior muscles and used pseudo-signal injection to calculate the Pi, PCr, and ATP concentrations. We compared these results to parallel estimates of concentrations obtained using the more established phantom replacement method. Our results demonstrate that pseudo-signal injection using inductive coupling provides a robust calibration factor that is immune to coil loading conditions and suitable for use in human measurements. Having benefits in terms of ease of use and quantitative accuracy, this method is feasible for clinical use. The protocol we describe could be readily translated for use in patients with mitochondrial disease, where sensitive assessment of metabolite content could improve diagnosis and treatment
Osteopetrosis
Osteopetrosis ("marble bone disease") is a descriptive term that refers to a group of rare, heritable disorders of the skeleton characterized by increased bone density on radiographs. The overall incidence of these conditions is difficult to estimate but autosomal recessive osteopetrosis (ARO) has an incidence of 1 in 250,000 births, and autosomal dominant osteopetrosis (ADO) has an incidence of 1 in 20,000 births. Osteopetrotic conditions vary greatly in their presentation and severity, ranging from neonatal onset with life-threatening complications such as bone marrow failure (e.g. classic or "malignant" ARO), to the incidental finding of osteopetrosis on radiographs (e.g. osteopoikilosis). Classic ARO is characterised by fractures, short stature, compressive neuropathies, hypocalcaemia with attendant tetanic seizures, and life-threatening pancytopaenia. The presence of primary neurodegeneration, mental retardation, skin and immune system involvement, or renal tubular acidosis may point to rarer osteopetrosis variants, whereas onset of primarily skeletal manifestations such as fractures and osteomyelitis in late childhood or adolescence is typical of ADO. Osteopetrosis is caused by failure of osteoclast development or function and mutations in at least 10 genes have been identified as causative in humans, accounting for 70% of all cases. These conditions can be inherited as autosomal recessive, dominant or X-linked traits with the most severe forms being autosomal recessive. Diagnosis is largely based on clinical and radiographic evaluation, confirmed by gene testing where applicable, and paves the way to understanding natural history, specific treatment where available, counselling regarding recurrence risks, and prenatal diagnosis in severe forms. Treatment of osteopetrotic conditions is largely symptomatic, although haematopoietic stem cell transplantation is employed for the most severe forms associated with bone marrow failure and currently offers the best chance of longer-term survival in this group. The severe infantile forms of osteopetrosis are associated with diminished life expectancy, with most untreated children dying in the first decade as a complication of bone marrow suppression. Life expectancy in the adult onset forms is normal. It is anticipated that further understanding of the molecular pathogenesis of these conditions will reveal new targets for pharmacotherapy
Genetic instability and anti-HPV immune response as drivers of infertility associated with HPV infection
Funding Information: RFBR grant 17–54-30002, Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075–15–2019-1660) to Olga Smirnova. Publisher Copyright: © 2021, The Author(s).Human papillomavirus (HPV) is a sexually transmitted infection common among men and women of reproductive age worldwide. HPV viruses are associated with epithelial lesions and cancers. HPV infections have been shown to be significantly associated with many adverse effects in reproductive function. Infection with HPVs, specifically of high-oncogenic risk types (HR HPVs), affects different stages of human reproduction, resulting in a series of adverse outcomes: 1) reduction of male fertility (male infertility), characterized by qualitative and quantitative semen alterations; 2) impairment of couple fertility with increase of blastocyst apoptosis and reduction of endometrial implantation of trophoblastic cells; 3) defects of embryos and fetal development, with increase of spontaneous abortion and spontaneous preterm birth. The actual molecular mechanism(s) by which HPV infection is involved remain unclear. HPV-associated infertility as Janus, has two faces: one reflecting anti-HPV immunity, and the other, direct pathogenic effects of HPVs, specifically, of HR HPVs on the infected/HPV-replicating cells. Adverse effects observed for HR HPVs differ depending on the genotype of infecting virus, reflecting differential response of the host immune system as well as functional differences between HPVs and their individual proteins/antigens, including their ability to induce genetic instability/DNA damage. Review summarizes HPV involvement in all reproductive stages, evaluate the adverse role(s) played by HPVs, and identifies mechanisms of viral pathogenicity, common as well as specific for each stage of the reproduction process.publishersversionPeer reviewe
Translational Stroke Research Using a Rabbit Embolic Stroke Model: A Correlative Analysis Hypothesis for Novel Therapy Development
Alteplase (tissue plasminogen activator, tPA) is currently the only FDA-approved treatment that can be given to acute ischemic stroke (AIS) patients if patients present within 3 h of an ischemic stroke. After 14 years of alteplase clinical research, evidence now suggests that the therapeutic treatment window can be expanded 4.5 h, but this is not formally approved by the FDA. Even though there remains a significant risk of intracerebral hemorrhage associated with alteplase administration, there is an increased chance of favorable outcome with tPA treatment. Over the last 30 years, the use of preclinical models has assisted with the search for new effective treatments for stroke, but there has been difficulty with the translation of efficacy from animals to humans. Current research focuses on the development of new and potentially useful thrombolytics, neuroprotective agents, and devices which are also being tested for efficacy in preclinical and clinical trials. One model in particular, the rabbit small clot embolic stroke model (RSCEM) which was developed to test tPA for efficacy, remains the only preclinical model used to gain FDA approval of a therapeutic for stroke. Correlative analyses from existing preclinical translational studies and clinical trials indicate that there is a therapeutic window ratio (ARR) of 2.43-3 between the RSCEM and AIS patients. In conclusion, the RSCEM can be used as an effective translational tool to gauge the clinical potential of new treatments
- …