134 research outputs found
Multi-Scale Modelling of Aggregation of TiO2 Nanoparticle Suspensions in Water
Titanium dioxide nanoparticles have risen concerns about their possible toxicity and the European Food Safety Authority recently banned the use of TiO2 nano-additive in food products. Following the intent of relating nanomaterials atomic structure with their toxicity without having to conduct large-scale experiments on living organisms, we investigate the aggregation of titanium dioxide nanoparticles using a multi-scale technique: starting from ab initio Density Functional Theory to get an accurate determination of the energetics and electronic structure, we switch to classical Molecular Dynamics simulations to calculate the Potential of Mean Force for the connection of two identical nanoparticles in water; the fitting of the latter by a set of mathematical equations is the key for the upscale. Lastly, we perform Brownian Dynamics simulations where each nanoparticle is a spherical bead. This coarsening strategy allows studying the aggregation of a few thousand nanoparticles. Applying this novel procedure, we find three new molecular descriptors, namely, the aggregation free energy and two numerical parameters used to correct the observed deviation from the aggregation kinetics described by the Smoluchowski theory. Ultimately, molecular descriptors can be fed into QSAR models to predict the toxicity of a material knowing its physicochemical properties, enabling safe design strategies
3D printed lattice metal structures for enhanced heat transfer in latent heat storage systems
The low thermal conductivity of Phase Change Materials (PCMs), e.g., paraffin waxes, is one of the main drawbacks of latent heat storage, especially when fast charging and discharging cycles are required. The introduction of highly conductive fillers in the PCM matrix may be an effective solution; however, it is difficult to grant their stable and homogeneous dispersion, which therefore limits the resulting enhancement of the overall thermal conductivity. Metal 3D printing or additive manufacturing, instead, allows to manufacture complex geometries with precise patterns, therefore allowing the design of optimal paths for heat conduction within the PCM. In this work, a device-scale latent heat storage system operating at medium temperatures (similar to 90 celcius) was manufactured and characterized. Its innovative design relies on a 3D Cartesian metal lattice, fabricated via laser powder bed fusion, to achieve higher specific power densities. Numerical and experimental tests demonstrated remarkable specific power (approximately 714 +/- 17 W kg-1 and 1310 +/- 48 W kg-1 during heat charge and discharge, respectively). Moreover, the device performance remained stable over multiple charging and discharging cycles. Finally, simulation results were used to infer general design guidelines to further enhance the device performance. This work aims at promoting the use of metal additive manufacturing to design efficient and responsive thermal energy storage units for medium-sized applications, such as in the automotive sector (e.g. speed up of the engine warm up or as an auxiliary for other enhanced thermal management strategies)
Fecal carriage of Escherichia coli O157:H7 and carcass contamination in cattle at slaughter in northern Italy
Feedlot cattle slaughtered at a large abattoir in northern Italy during 2002 were examined for intestinal carriage and carcass contamination with Escherichia coli O157:H7. Carcass samples were taken following the excision method described in the Decision 471/2001/EC, and fecal material was taken from the colon of the calves after evisceration. Bacteria were isolated and identified according to the MFLP-80 and MFLP-90 procedures (Food Directorate’s Health Canada’s). Eighty-eight non-sorbitol-fermenting E. coli O157:H7 isolates were obtained from 12 of the 45 calves examined. In particular, E. coli O157:H7 isolates were found in 11 (24%) fecal and five (11%) carcass samples. PCR analysis showed that all 11
fecal samples and five carcass samples carried eae-γ1-positive E. coli O157:H7 isolates. In addition, genes encoding Shigatoxins were detected in O157:H7 isolates from nine and two of those 11 fecal and five carcasses, respectively. A representative group of 32 E. coli O157:H7 isolates was analyzed by phage typing and DNA macrorestriction fragment analysis (PFGE). Five phage types (PT8, PT32v, PT32, PT54, and PT not typable) and seven (I–VII) distinct restriction patterns of similarity
> 85% were detected. Up to three different O157:H7 strains in an individual fecal sample and up to four from the same animal could be isolated. These findings provide evidence of the epidemiological importance of subtyping more than one isolate from the same sample. Phage typing together with PFGE proved to be very useful tools to detect cross-contamination among carcasses and should therefore be included in HACCP programs at abattoirs. The results showed that the same PFGE-phage type E. coli O157:H7 profile was detected in the fecal and carcass samples from an animal, and also in two more carcasses corresponding to two animals slaughtered the same day. [Int Microbiol 2007; 10(2):109-116
Pierce the ear and stab the spleen
Splenic abscess is a rare but extremely dangerous condition generally spreading from a local, or systemic, focus of infection. We present the case of a young immunocompetent female admitted with sepsis and multiple splenic abscesses. The patient had a recent left ear piercing on the tragus complicated by an ear infection. The presence of a solitary parotid abscess, the absence of other infectious foci on computed tomography scan, the negativity of blood cultures and the absence of endocarditis vegetations led us to think that the most likely culprit was a hematogenous dissemination from the left tragus. The patient was successfully treated with intravenous antibiotics. There had been no need of splenectomy or any other procedure. This rather unique case underscores that splenic abscess should be suspected when a long-lasting fever and pain in the left hypochondrium are present, even when an apparently innocuous invasive procedure, such as a body piercing, is performed
YY1 overexpression is associated with poor prognosis and metastasis-free survival in patients suffering osteosarcoma
<p>Abstract</p> <p>Background</p> <p>The polycomb transcription factor Yin Yang 1 (YY1) overexpression can be causally implicated in experimental tumor growth and metastasization. To date, there is no clinical evidence of YY1 involvement in outcome of patients with osteosarcoma. Prognosis of osteosarcoma is still severe and only few patients survive beyond five years. We performed a prospective immunohistochemistry analysis to correlate YY1 immunostaining with metastatic development and survival in a selected homogeneous group of patients with osteosarcoma.</p> <p>Methods</p> <p>We studied 41 patients suffering from osteosarcoma (stage II-IVa). Multivariate analysis was performed using Cox proportional hazard regression to evaluate the correlation between YY1 expression and both metastasis development and mortality.</p> <p>Results</p> <p>YY1 protein is not usually present in normal bone; in contrast, a high number of patients (61%) showed a high score of YY1 positive cells (51-100%) and 39% had a low score (10-50% positive cells). No statistical difference was found in histology, anatomic sites, or response to chemotherapy between the two degrees of YY1 expression. Cox regression analysis demonstrated that the highest score of YY1 expression was predictive of both low metastasis-free survival (HR = 4.690, 95%CI = 1.079-20.396; p = 0.039) and poor overall survival (HR = 8.353, 95%CI = 1.863-37.451 p = 0.006) regardless of the effects of covariates such as age, gender, histology and chemonecrosis.</p> <p>Conclusion</p> <p>Overexpression of YY1 in primary site of osteosarcoma is associated with the occurrence of metastasis and poor clinical outcome.</p
Voronoi Tessellation Captures Very Early Clustering of Single Primary Cells as Induced by Interactions in Nascent Biofilms
Biofilms dominate microbial life in numerous aquatic ecosystems, and in engineered and medical systems, as well. The formation of biofilms is initiated by single primary cells colonizing surfaces from the bulk liquid. The next steps from primary cells towards the first cell clusters as the initial step of biofilm formation remain relatively poorly studied. Clonal growth and random migration of primary cells are traditionally considered as the dominant processes leading to organized microcolonies in laboratory grown monocultures. Using Voronoi tessellation, we show that the spatial distribution of primary cells colonizing initially sterile surfaces from natural streamwater community deviates from uniform randomness already during the very early colonisation. The deviation from uniform randomness increased with colonisation — despite the absence of cell reproduction — and was even more pronounced when the flow of water above biofilms was multidirectional and shear stress elevated. We propose a simple mechanistic model that captures interactions, such as cell-to-cell signalling or chemical surface conditioning, to simulate the observed distribution patterns. Model predictions match empirical observations reasonably well, highlighting the role of biotic interactions even already during very early biofilm formation despite few and distant cells. The transition from single primary cells to clustering accelerated by biotic interactions rather than by reproduction may be particularly advantageous in harsh environments — the rule rather than the exception outside the laboratory
Bacteria clustering by polymers induces the expression of quorum sense controlled phenotypes
Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one mean by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are thus a potential means to control bacterial population responses. Here we report how polymeric "bacteria sequestrants", designed to bind to bacteria through electrostatic interactions and thus inhibit bacterial adhesion to surfaces, induce the expression of quorum sensing controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterise the feedback between bacteria clustering and quorum sensing signaling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population leve
Prognostic impact of reduced connexin43 expression and gap junction coupling of neoplastic stromal cells in giant cell tumor of bone
Missense mutations of the GJA1 gene encoding the gap junction channel protein connexin43 (Cx43) cause bone malformations resulting in oculodentodigital dysplasia (ODDD), while GJA1 null and ODDD mutant mice develop osteopenia. In this study we investigated Cx43 expression and channel functions in giant cell tumor of bone (GCTB), a locally aggressive osteolytic lesion with uncertain progression. Cx43 protein levels assessed by immunohistochemistry were correlated with GCTB cell types, clinico-radiological stages and progression free survival in tissue microarrays of 89 primary and 34 recurrent GCTB cases. Cx43 expression, phosphorylation, subcellular distribution and gap junction coupling was also investigated and compared between cultured neoplastic GCTB stromal cells and bone marow stromal cells or HDFa fibroblasts as a control. In GCTB tissues, most Cx43 was produced by CD163 negative neoplastic stromal cells and less by CD163 positive reactive monocytes/macrophages or by giant cells. Significantly less Cx43 was detected in alpha-smooth muscle actin positive than alpha-smooth muscle actin negative stromal cells and in osteoclast-rich tumor nests than in the adjacent reactive stroma. Progressively reduced Cx43 production in GCTB was significantly linked to advanced clinico-radiological stages and worse progression free survival. In neoplastic GCTB stromal cell cultures most Cx43 protein was localized in the paranuclear-Golgi region, while it was concentrated in the cell membranes both in bone marrow stromal cells and HDFa fibroblasts. In Western blots, alkaline phosphatase sensitive bands, linked to serine residues (Ser369, Ser372 or Ser373) detected in control cells, were missing in GCTB stromal cells. Defective cell membrane localization of Cx43 channels was in line with the significantly reduced transfer of the 622 Da fluorescing calcein dye between GCTB stromal cells. Our results show that significant downregulation of Cx43 expression and gap junction coupling in neoplastic stromal cells are associated with the clinical progression and worse prognosis in GCTB
- …