360 research outputs found
The Coherent Crooks Equality
This chapter reviews an information theoretic approach to deriving quantum
fluctuation theorems. When a thermal system is driven from equilibrium, random
quantities of work are required or produced: the Crooks equality is a classical
fluctuation theorem that quantifies the probabilities of these work
fluctuations. The framework summarised here generalises the Crooks equality to
the quantum regime by modeling not only the driven system but also the control
system and energy supply that enables the system to be driven. As is reasonably
common within the information theoretic approach but high unusual for
fluctuation theorems, this framework explicitly accounts for the energy
conservation using only time independent Hamiltonians. We focus on explicating
a key result derived by Johan {\AA}berg: a Crooks-like equality for when the
energy supply is allowed to exist in a superposition of energy eigenstates
states.Comment: 11 pages, 3 figures; Chapter for the book "Thermodynamics in the
Quantum Regime - Recent Progress and Outlook", eds. F. Binder, L. A. Correa,
C. Gogolin, J. Anders and G. Adess
Scanning the Parameter Space of Holographic Superconductors
We study various physical quantities associated with holographic s-wave
superconductors as functions of the scaling dimensions of the dual condensates.
A bulk scalar field with negative mass squared , satisfying the
Breitenlohner-Freedman stability bound and the unitarity bound, and allowed to
vary in unit intervals, were considered. We observe that all the physical
quantities investigated are sensitive to the scaling dimensions of the dual
condensates. For all the , the characteristic lengths diverge at the
critical temperature in agreement with the Ginzburg-Landau theory. The
Ginzburg-Landau parameter, obtained from these length scales indicates that the
holographic superconductors can be type I or type II depending on the charge
and the scaling dimensions of the dual condensates. For a fixed charge, there
exists a critical scaling dimension, above which a holographic superconductor
is type I, below which it becomes a type II.Comment: 24 pages 47 figure
Holographic Studies of Entanglement Entropy in Superconductors
We present the results of our studies of the entanglement entropy of a
superconducting system described holographically as a fully back-reacted
gravity system, with a stable ground state. We use the holographic prescription
for the entanglement entropy. We uncover the behavior of the entropy across the
superconducting phase transition, showing the reorganization of the degrees of
freedom of the system. We exhibit the behaviour of the entanglement entropy
from the superconducting transition all the way down to the ground state at
T=0. In some cases, we also observe a novel transition in the entanglement
entropy at intermediate temperatures, resulting from the detection of an
additional length scale.Comment: 21 pages, 14 figures. v2:Clarified some remarks concerning stability.
v3: Updated to the version that appears in JHE
Holographic Aspects of Fermi Liquids in a Background Magnetic Field
We study the effects of an external magnetic field on the properties of the
quasiparticle spectrum of the class of 2+1 dimensional strongly coupled
theories holographically dual to charged AdS black holes at zero
temperature. We uncover several interesting features. At certain values of the
magnetic field, there are multiple quasiparticle peaks representing a novel
level structure of the associated Fermi surfaces. Furthermore, increasing
magnetic field deforms the dispersion characteristics of the quasiparticle
peaks from non-Landau toward Landau behaviour. At a certain value of the
magnetic field, just at the onset of Landau-like behaviour of the Fermi liquid,
the quasiparticles and Fermi surface disappear.Comment: 18 pages, 10 figures. Revised some of the terminology: changed
non-separable solutions to infinite-sum solution
AdS/CFT with Flavour in Electric and Magnetic Kalb-Ramond Fields
We investigate gauge/gravity duals with flavour for which pure-gauge
Kalb-Ramond B fields are turned on in the background, into which a D7 brane
probe is embedded. First we consider the case of a magnetic field in two of the
spatial boundary directions. We show that at finite temperature, i.e. in the
AdS-Schwarzschild background, the B field has a stabilizing effect on the
mesons and chiral symmetry breaking occurs for a sufficiently large value of
the B field. Then we turn to the electric case of a B field in the temporal
direction and one spatial boundary direction. In this case, there is a singular
region in which it is necessary to turn on a gauge field on the brane in order
to ensure reality of the brane action. We find that the brane embeddings are
attracted towards this region. Far away from this region, in the weak field
case at zero temperature, we investigate the meson spectrum and find a mass
shift similar to the Stark effect.Comment: 34 pages, 18 figures, v2: added references and comments on mode
decoupling, on thermodynamics and holographic renormalisation, JHEP style,
v3: Final published versio
Critical Exponents from AdS/CFT with Flavor
We use the AdS/CFT correspondence to study the thermodynamics of massive N=2
supersymmetric hypermultiplet flavor fields coupled to N=4 supersymmetric
SU(Nc) Yang-Mills theory, formulated on curved four-manifolds, in the limits of
large Nc and large 't Hooft coupling. The gravitational duals are probe
D-branes in global thermal AdS. These D-branes may undergo a topology-changing
transition in the bulk. The D-brane embeddings near the point of the topology
change exhibit a scaling symmetry. The associated scaling exponents can be
either real- or complex-valued. Which regime applies depends on the
dimensionality of a collapsing submanifold in the critical embedding. When the
scaling exponents are complex-valued, a first-order transition associated with
the flavor fields appears in the dual field theory. Real scaling exponents are
expected to be associated with a continuous transition in the dual field
theory. For one example with real exponents, the D7-brane, we study the
transition in detail. We find two field theory observables that diverge at the
critical point, and we compute the associated critical exponents. We also
present analytic and numerical evidence that the transition expresses itself in
the meson spectrum as a non-analyticity at the critical point. We argue that
the transition we study is a true phase transition only when the 't Hooft
coupling is strictly infinite.Comment: 31 pages, 21 eps files in 12 figures; v2 added one reference and one
footnote, version published in JHE
Back-reaction of Non-supersymmetric Probes: Phase Transition and Stability
We consider back-reaction by non-supersymmetric D7/anti-D7 probe branes in
the Kuperstein-Sonnenschein model at finite temperature. Using the smearing
technique, we obtain an analytical solution for the back-reacted background to
leading order in N_f/N_c. This back-reaction explicitly breaks the conformal
invariance and introduces a dimension 6 operator in the dual field theory which
is an irrelevant deformation of the original conformal field theory. We further
probe this back-reacted background by introducing an additional set of probe
brane/anti-brane. This additional probe sector undergoes a chiral phase
transition at finite temperature, which is absent when the back-reaction
vanishes. We investigate the corresponding phase diagram and the thermodynamics
associated with this phase transition. We also argue that additional probes do
not suffer from any instability caused by the back-reaction, which suggests
that this system is stable beyond the probe limit.Comment: 56 pages, 8 figures. References updated, improved discussion on
dimension eight operato
Criticality, Scaling and Chiral Symmetry Breaking in External Magnetic Field
We consider a D7-brane probe of in the presence of pure
gauge -field. The dual gauge theory is flavored Yang-Mills theory in
external magnetic field. We explore the dependence of the fermionic condensate
on the bare quark mass and study the discrete self-similar behavior of
the theory near the origin of the parametric space. We calculate the critical
exponents of the bare quark mass and the fermionic condensate. A study of the
meson spectrum supports the expectation based on thermodynamic considerations
that at zero bare quark mass the stable phase of the theory is a chiral
symmetry breaking one. Our study reveals the self-similar structure of the
spectrum near the critical phase of the theory, characterized by zero fermionic
condensate and we calculate the corresponding critical exponent of the meson
spectrum.Comment: 29 pages, 9 figures. Accepted in JHEP. Updated to mach the published
version. One figure added, some definitions improve
Energy Loss of Heavy Quarks from Asymptotically AdS Geometries
We investigate some universal features of AdS/CFT models of heavy quark
energy loss. In addition, as a specific example, we examine quark damping in
the spinning D3-brane solution dual to N=4 SU(N_c) super Yang-Mills at finite
temperature and R-charge chemical potential.Comment: 17 pages, 9 figures; v2 refs added, typo fixe
- …
