5 research outputs found

    Fuzzy logic-based controller of the bidirectional direct current to direct current converter in microgrid

    Get PDF
    Microgrids are small-scale power networks that include renewable energy sources, load, energy storage systems, and energy management systems (EMS). Lithium-ion batteries are the most used battery for energy storage in microgrids due to their advantages over other types of batteries. However, to protect the battery from the explosion and to manage to charge and discharge based on state-of-charge (SoC) value, this type of battery requires the use of an energy management system. The main objective of this paper is to propose an intelligent control strategy for energy management in the microgrid to control the charge and discharge of Li-ion batteries to stabilize the system and reduce the cost of electricity due to the high cost of grid electricity. The proposed technique is based on a fuzzy logic controller (FLC) for voltage control. The FLC is based on the measured voltage of the direct current (DC) bus and the fixed reference voltage to generate buck/boost converter signal control. The proposed technique has been simulated and tested using MATLAB/Simulink software which illustrates the tracking of desired power and DC bus voltage regulation. The simulation results confirm that the proposed systems can diminish the deviations of the system's voltage

    Microgrid energy management and monitoring systems: A comprehensive review

    Get PDF
    Microgrid (MG) technologies offer users attractive characteristics such as enhanced power quality, stability, sustainability, and environmentally friendly energy through a control and Energy Management System (EMS). Microgrids are enabled by integrating such distributed energy sources into the utility grid. The microgrid concept is proposed to create a self-contained system composed of distributed energy resources capable of operating in an isolated mode during grid disruptions. With the Internet of Things (IoT) daily technological advancements and updates, intelligent microgrids, the critical components of the future smart grid, are integrating an increasing number of IoT architectures and technologies for applications aimed at developing, controlling, monitoring, and protecting microgrids. Microgrids are composed of various distributed generators (DG), which may include renewable and non-renewable energy sources. As a result, a proper control strategy and monitoring system must guarantee that MG power is transferred efficiently to sensitive loads and the primary grid. This paper evaluates MG control strategies in detail and classifies them according to their level of protection, energy conversion, integration, benefits, and drawbacks. This paper also shows the role of the IoT and monitoring systems for energy management and data analysis in the microgrid. Additionally, this analysis highlights numerous elements, obstacles, and issues regarding the long-term development of MG control technologies in next-generation intelligent grid applications. This paper can be used as a reference for all new microgrid energy management and monitoring research

    Ad-hoc Sensor Networks Issues: Coverage, Protocol and Security

    No full text
    A mobile ad hoc network (MANET) is an incessantly self-configuring, infrastructure-less network of mobile devices allied without wires. Ad hoc is Latin word and means “for this purpose”. (WSN) Wireless Sensor networks have all the indispensable features of ad hoc networks but to unusual degrees e.g. much inferior mobility and much extra inflexible energy necessities. In this article we scrutinize the contemporary status of research and weigh up open problems or challenges in maturity of routing techniques in WSN’s

    Multi-Agent-Based Fault Location and Cyber-Attack Detection in Distribution System

    No full text
    Accurate fault location is challenging due to the distribution network’s various branches, complicated topology, and the increasing penetration of distributed energy resources (DERs). The diagnostics for power system faults are based on fault localization, isolation, and smart power restoration. Adaptive multi-agent systems (MAS) can improve the reliability, speed, selectivity, and robustness of power system protection. This paper proposes a MAS-based adaptive protection mechanism for fault location in smart grid applications. This study developed a novel distributed intelligent-based multi-agent prevention and mitigation technique for power systems against electrical faults and cyber-attacks. Simulation studies are performed on a platform constructed by interconnecting the power distribution system of Kenitra city developed in MATLAB/SIMULINK and the multi-agent system implemented in the JADE platform. The simulation results demonstrate the effectiveness of the proposed technique

    Multi-Agent-Based Fault Location and Cyber-Attack Detection in Distribution System

    No full text
    Accurate fault location is challenging due to the distribution network’s various branches, complicated topology, and the increasing penetration of distributed energy resources (DERs). The diagnostics for power system faults are based on fault localization, isolation, and smart power restoration. Adaptive multi-agent systems (MAS) can improve the reliability, speed, selectivity, and robustness of power system protection. This paper proposes a MAS-based adaptive protection mechanism for fault location in smart grid applications. This study developed a novel distributed intelligent-based multi-agent prevention and mitigation technique for power systems against electrical faults and cyber-attacks. Simulation studies are performed on a platform constructed by interconnecting the power distribution system of Kenitra city developed in MATLAB/SIMULINK and the multi-agent system implemented in the JADE platform. The simulation results demonstrate the effectiveness of the proposed technique
    corecore