2,644 research outputs found

    Irreversible phase transitions induced by an oscillatory input

    Full text link
    A novel kind of irreversible phase transitions (IPT's) driven by an oscillatory input parameter is studied by means of computer simulations. Second order IPT's showing scale invariance in relevant dynamic critical properties are found to belong to the universality class of directed percolation. In contrast, the absence of universality is observed for first order IPT's.Comment: 18 pages (Revtex); 8 figures (.ps); submitted to Europhysics Letters, December 9th, 199

    Study of the one-dimensional off-lattice hot-monomer reaction model

    Full text link
    Hot monomers are particles having a transient mobility (a ballistic flight) prior to being definitely absorbed on a surface. After arriving at a surface, the excess energy coming from the kinetic energy in the gas phase is dissipated through degrees of freedom parallel to the surface plane. In this paper we study the hot monomer-monomer adsorption-reaction process on a continuum (off-lattice) one-dimensional space by means of Monte Carlo simulations. The system exhibits second-order irreversible phase transition between a reactive and saturated (absorbing) phases which belong to the directed percolation (DP) universality class. This result is interpreted by means of a coarse-grained Langevin description which allows as to extend the DP conjecture to transitions occurring in continuous media.Comment: 13 pages, 5 figures, final version to appear in J. Phys.

    A Novel Predictive Tool in Nanoengineering: Straightforward Estimation of Superconformal Filling Efficiency

    Full text link
    It is shown that the superconformal filling (SCF) efficiency (ϵSCF\epsilon_{SCF}) of nano-scale cavities can be rationalized in terms of relevant physical and geometric parameters. Based on extensive numerical simulations and using the dynamic scaling theory of interface growth, it is concluded that the relevant quantity for the evaluation of ϵSCF\epsilon_{SCF} is the so-called "physical" aspect ratio SP=L/Mβ/αS_{P} = L/M^{\beta/\alpha}, where α\alpha (β\beta) is the roughness (growth) exponent that governs the dynamic evolution of the system and LL (MM) is the typical depth (width) of the cavity. The theoretical predictions are in excellent agreement with recently reported experimental data for the SCF of electrodeposited copper and chemically deposited silver in confined geometries, thus giving the basis of a new tool to manage nanoengineering-related problems not completely resolved so far.Comment: 3 pages, 2 figure

    Critical behavior of a non-equilibrium interacting particle system driven by an oscillatory field

    Full text link
    First- and second-order temperature driven transitions are studied, in a lattice gas driven by an oscillatory field. The short time dynamics study provides upper and lower bounds for the first-order transition points obtained using standard simulations. The difference between upper and lower bounds is a measure for the strength of the first-order transition and becomes negligible small for densities close to one half. In addition, we give strong evidence on the existence of multicritical points and a critical temperature gap, the latter induced by the anisotropy introduced by the driving field.Comment: 12 pages, 4 figures; to appear in Europhys. Let

    Critical Behavior of an Ising System on the Sierpinski Carpet: A Short-Time Dynamics Study

    Full text link
    The short-time dynamic evolution of an Ising model embedded in an infinitely ramified fractal structure with noninteger Hausdorff dimension was studied using Monte Carlo simulations. Completely ordered and disordered spin configurations were used as initial states for the dynamic simulations. In both cases, the evolution of the physical observables follows a power-law behavior. Based on this fact, the complete set of critical exponents characteristic of a second-order phase transition was evaluated. Also, the dynamic exponent θ\theta of the critical initial increase in magnetization, as well as the critical temperature, were computed. The exponent θ\theta exhibits a weak dependence on the initial (small) magnetization. On the other hand, the dynamic exponent zz shows a systematic decrease when the segmentation step is increased, i.e., when the system size becomes larger. Our results suggest that the effective noninteger dimension for the second-order phase transition is noticeably smaller than the Hausdorff dimension. Even when the behavior of the magnetization (in the case of the ordered initial state) and the autocorrelation (in the case of the disordered initial state) with time are very well fitted by power laws, the precision of our simulations allows us to detect the presence of a soft oscillation of the same type in both magnitudes that we attribute to the topological details of the generating cell at any scale.Comment: 10 figures, 4 tables and 14 page

    Dynamical and stationary critical behavior of the Ising ferromagnet in a thermal gradient

    Full text link
    In this paper we present and discuss results of Monte Carlo numerical simulations of the two-dimensional Ising ferromagnet in contact with a heat bath that intrinsically has a thermal gradient. The extremes of the magnet are at temperatures T1<Tc<T2T_1<T_c<T_2, where TcT_c is the Onsager critical temperature. In this way one can observe a phase transition between an ordered phase (TTcTT_c) by means of a single simulation. By starting the simulations with fully disordered initial configurations with magnetization m0m\equiv 0 corresponding to T=T=\infty, which are then suddenly annealed to a preset thermal gradient, we study the short-time critical dynamic behavior of the system. Also, by setting a small initial magnetization m=m0m=m_0, we study the critical initial increase of the order parameter. Furthermore, by starting the simulations from fully ordered configurations, which correspond to the ground state at T=0 and are subsequently quenched to a preset gradient, we study the critical relaxation dynamics of the system. Additionally, we perform stationary measurements (tt\rightarrow\infty) that are discussed in terms of the standard finite-size scaling theory. We conclude that our numerical simulation results of the Ising magnet in a thermal gradient, which are rationalized in terms of both dynamic and standard scaling arguments, are fully consistent with well established results obtained under equilibrium conditions
    corecore