47 research outputs found

    Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks

    Full text link
    While the use of bottom-up local operators in convolutional neural networks (CNNs) matches well some of the statistics of natural images, it may also prevent such models from capturing contextual long-range feature interactions. In this work, we propose a simple, lightweight approach for better context exploitation in CNNs. We do so by introducing a pair of operators: gather, which efficiently aggregates feature responses from a large spatial extent, and excite, which redistributes the pooled information to local features. The operators are cheap, both in terms of number of added parameters and computational complexity, and can be integrated directly in existing architectures to improve their performance. Experiments on several datasets show that gather-excite can bring benefits comparable to increasing the depth of a CNN at a fraction of the cost. For example, we find ResNet-50 with gather-excite operators is able to outperform its 101-layer counterpart on ImageNet with no additional learnable parameters. We also propose a parametric gather-excite operator pair which yields further performance gains, relate it to the recently-introduced Squeeze-and-Excitation Networks, and analyse the effects of these changes to the CNN feature activation statistics.Comment: NeurIPS 201

    Sign segmentation with changepoint-modulated pseudo-labelling

    Get PDF
    The objective of this work is to find temporal boundaries between signs in continuous sign language. Motivated by the paucity of annotation available for this task, we propose a simple yet effective algorithm to improve segmentation performance on unlabelled signing footage from a domain of interest. We make the following contributions: (1) We motivate and introduce the task of source-free domain adaptation for sign language segmentation, in which labelled source data is available for an initial training phase, but is not available during adaptation. (2) We propose the Changepoint-Modulated Pseudo-Labelling (CMPL) algorithm to leverage cues from abrupt changes in motion-sensitive feature space to improve pseudo-labelling quality for adaptation. (3) We showcase the effectiveness of our approach for category-agnostic sign segmentation, transferring from the BSLCORPUS to the BSL-1K and RWTH-PHOENIX-Weather 2014 datasets, where we outperform the prior state of the art

    SLRTP 2020: The Sign Language Recognition, Translation & Production Workshop

    Get PDF
    The objective of the “Sign Language Recognition, Translation & Production” (SLRTP 2020) Workshop was to bring together researchers who focus on the various aspects of sign language understanding using tools from computer vision and linguistics. The workshop sought to promote a greater linguistic and historical understanding of sign languages within the computer vision community, to foster new collaborations and to identify the most pressing challenges for the field going forwards. The workshop was held in conjunction with the European Conference on Computer Vision (ECCV), 2020

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    Seeing Voices and Hearing Faces: Cross-Modal Biometric Matching

    No full text
    We introduce a seemingly impossible task: Given only an audio clip of someone speaking, decide which of two face images is the speaker. In this paper we study this, and a number of related cross-modal tasks, aimed at answering the question: How much can we infer from the voice about the face and vice versa? We study this task 'in the wild', employing the datasets that are now publicly available for face recognition from static images (VGGFace) and speaker identification from audio (VoxCeleb). These provide training and testing scenarios for both static and dynamic testing of cross-modal matching. We make the following contributions: (i) we introduce CNN architectures for both binary and multi-way cross-modal face and audio matching: (ii) we compare dynamic testing (where video information is available, but the audio is not from the same video) with static testing (where only a single still image is available): And (iii) we use human testing as a baseline to calibrate the difficulty of the task. We show that a CNN can indeed be trained to solve this task in both the static and dynamic scenarios, and is even well above chance on 10-way classification of the face given the voice. The CNN matches human performance on easy examples (e.g. different gender across faces) but exceeds human performance on more challenging examples (e.g. faces with the same gender, age and nationality)

    Learning grimaces by watching tv

    No full text
    Differently from computer vision systems which require explicit supervision, humans can learn facial expressions by observing people in their environment. In this paper, we look at how similar capabilities could be developed in machine vision. As a starting point, we consider the problem of relating facial expressions to objectively-measurable events occurring in videos. In particular, we consider a gameshow in which contestants play to win significant sums of money. We extract events affecting the game and corresponding facial expressions objectively and automatically from the videos, obtaining large quantities of labelled data for our study. We also develop, using benchmarks such as FER and SFEW 2.0, state-of-the-art deep neural networks for facial expression recognition, showing that pre-training on face verification data can be highly beneficial for this task. Then, we extend these models to use facial expressions to predict events in videos and learn nameable expressions from them. The dataset and emotion recognition models are available at http://www.robots.ox.ac.uk/~vgg/data/facevalue

    Learnable PINs: Cross-modal embeddings for person identity

    No full text
    We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas

    Learnable PINs: Cross-modal embeddings for person identity

    No full text
    We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas

    All you need are a few pixels: semantic segmentation with PixelPick

    No full text
    A central challenge for the task of semantic segmentation is the prohibitive cost of obtaining dense pixel-level annotations to supervise model training. In this work, we show that in order to achieve a good level of segmentation performance, all you need are a few well-chosen pixel labels.We make the following contributions: (i) We investigate the semantic segmentation setting in which labels are supplied only at sparse pixel locations, and show that deep neural networks can use a handful of such labels to good effect; (ii) We demonstrate how to exploit this phenomenon within an active learning framework, termed PixelPick, to radically reduce labelling cost, and propose an efficient "mouse-free"annotation strategy to implement our approach; (iii) We conduct extensive experiments to study the influence of annotation diversity under a fixed budget, model pretraining, model capacity and the sampling mechanism for picking pixels in this low annotation regime; (iv) We provide comparisons to the existing state of the art in semantic segmentation with active learning, and demonstrate comparable performance with up to two orders of magnitude fewer pixel annotations on the CamVid, Cityscapes and Pascal VOC 2012 benchmarks; (v) Finally, we evaluate the efficiency of our annotation pipeline and its sensitivity to annotator error to demonstrate its practicality

    Seeing voices and hearing faces: Cross-modal biometric matching

    No full text
    We introduce a seemingly impossible task: given only an audio clip of someone speaking, decide which of two face images is the speaker. In this paper we study this, and a number of related cross-modal tasks, aimed at answering the question: how much can we infer from the voice about the face and vice versa? We study this task “in the wild”, employing the datasets that are now publicly available for face recognition from static images (VGGFace) and speaker identification from audio (VoxCeleb). These provide training and testing scenarios for both static and dynamic testing of cross-modal matching. We make the following contributions: (i) we introduce CNN architectures for both binary and multi-way cross-modal face and audio matching; (ii) we compare dynamic testing (where video information is available, but the audio is not from the same video) with static testing (where only a single still image is available); and (iii) we use human testing as a baseline to calibrate the difficulty of the task. We show that a CNN can indeed be trained to solve this task in both the static and dynamic scenarios, and is even well above chance on 10-way classification of the face given the voice. The CNN matches human performance on easy examples (e.g. different gender across faces) but exceeds human performance on more challenging examples (e.g. faces with the same gender, age and nationality).</p
    corecore