15 research outputs found

    Vacuum spin squeezing

    Full text link
    We investigate the generation of entanglement (spin squeezing) in an optical-transition atomic clock through the coupling to a vacuum electromagnetic field that is enhanced by an optical cavity. We show that if each atom is prepared in a superposition of the ground state and a long-lived electronic excited state, and viewed as a spin-1/2 system, then the collective vacuum light shift entangles the atoms, resulting in a squeezed distribution of the ensemble collective spin. This scheme reveals that even a vacuum field can be a useful resource for entanglement and quantum manipulation. The method is simple and robust since it requires neither the application of light nor precise frequency control of the ultra-high-finesse cavity. Furthermore, the scheme can be used to implement two-axis twisting by rotating the spin direction while coupling to the vacuum, resulting in stronger squeezing

    Creation of a Bose-condensed gas of rubidium 87 by laser cooling

    Full text link
    We demonstrate direct laser cooling of a gas of rubidium 87 atoms to quantum degeneracy. The method does not involve evaporative cooling, is fast, and induces little atom loss. The atoms are trapped in a two-dimensional optical lattice that enables cycles of cloud compression to increase the density, followed by degenerate Raman sideband cooling to decrease the temperature. Light-induced loss at high atomic density is substantially reduced by using far red detuned optical pumping light. Starting with 2000 atoms, we prepare 1400 atoms in 300 ms at quantum degeneracy, as confirmed by the appearance of a bimodal velocity distribution as the system crosses over from a classical gas to a Bose-condensed, interacting one-dimensional gas with a macroscopic population of the quantum ground state. The method should be broadly applicable to many bosonic and fermionic species, and to systems where evaporative cooling is not possible.Comment: 5 pages, 3 figures (main text

    Calculation of Rydberg interaction potentials

    Get PDF
    The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation, and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence can be fine-tuned with great flexibility by choosing appropriate Rydberg states and applying external electric and magnetic fields. More and more experiments are probing this interaction at short atomic distances or with such high precision that perturbative calculations as well as restrictions to the leading dipole-dipole interaction term are no longer sufficient. In this tutorial, we review all relevant aspects of the full calculation of Rydberg interaction potentials. We discuss the derivation of the interaction Hamiltonian from the electrostatic multipole expansion, numerical and analytical methods for calculating the required electric multipole moments, and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source.Comment: accepted in J. Phys.

    Machine-learning-accelerated Bose-Einstein condensation

    Full text link
    Machine learning is emerging as a technology that can enhance physics experiment execution and data analysis. Here, we apply machine learning to accelerate the production of a Bose-Einstein condensate (BEC) of 87Rb^{87}\mathrm{Rb} atoms by Bayesian optimization of up to 55 control parameters. This approach enables us to prepare BECs of 2.8×1032.8 \times 10^3 optically trapped 87Rb^{87}\mathrm{Rb} atoms from a room-temperature gas in 575 ms. The algorithm achieves the fast BEC preparation by applying highly efficient Raman cooling to near quantum degeneracy, followed by a brief final evaporation. We anticipate that many other physics experiments with complex nonlinear system dynamics can be significantly enhanced by a similar machine-learning approach.Comment: 9 pages, 5 figures + supplemental materia

    Direct Laser Cooling to Bose-Einstein Condensation in a Dipole Trap

    No full text
    © 2019 American Physical Society. We present a method for producing three-dimensional Bose-Einstein condensates using only laser cooling. The phase transition to condensation is crossed with 2.5×104 Rb87 atoms at a temperature of Tc=0.6 μK after 1.4 s of cooling. Atoms are trapped in a crossed optical dipole trap and cooled using Raman cooling with far-off-resonant optical pumping light to reduce atom loss and heating. The achieved temperatures are well below the effective recoil temperature. We find that during the final cooling stage at atomic densities above 1014 cm-3, careful tuning of trap depth and optical-pumping rate is necessary to evade heating and loss mechanisms. The method may enable the fast production of quantum degenerate gases in a variety of systems including fermions

    Nanotrappy: An open-source versatile package for cold-atom trapping close to nanostructures

    No full text
    Trapping cold neutral atoms in close proximity to nanostructures has raised a large interest in recent years, pushing the frontiers of cavity-QED and boosting the emergence of the waveguide-QED field of research. The design of efficient dipole trapping schemes in evanescent fields is a crucial requirement and a difficult task. Here we present an open-source Python package for calculating optical trapping potentials for neutral atoms, especially in the vicinity of nanostructures. Given field distributions and for a variety of trap configurations, nanotrappy computes the three-dimensional trapping potentials as well as the trap properties, ranging from trap positions to trap frequencies and state-dependent light shifts. We demonstrate the versatility for various seminal structures in the field, e.g., optical nanofiber, alligator slow-mode photonic-crystal waveguide, and microtoroid. This versatile package facilitates the systematic design of structures and provides a full characterization of trapping potentials with applications to the coherent manipulation of atoms and quantum information science

    Creation of a Bose-condensed gas of 87

    No full text
    corecore