574 research outputs found
Global HI profiles of spiral galaxies
In this paper we present short HI synthesis observations of 57 galaxies
without HI information in the RC3. These are a by-product of a large survey
with the WSRT of the neutral hydrogen gas in spiral and irregular galaxies.
Global profiles and related quantities are given for the 42 detected galaxies
and upper limits for the remaining 15. A number of galaxies have low values of
HI mass-to-blue luminosity ratio.Comment: A LATEX file without figures. The postscript version including all
the figures can be retrieved from http://www.astro.rug.nl:80/~secr/ Accepted
for publication in Astronomy & Astrophysics Suppl. Serie
Chandra Observations and the Nature of the Anomalous Arms of NGC 4258 (M 106)
This paper presents high resolution X-ray observations with Chandra of NGC
4258 and infers the nature of the so called ``anomalous arms'' in this galaxy.
The anomalous arms dominate the X-ray image; diffuse X-ray emission from the
``plateaux'' regions, seen in radio and H imaging, is also found. X-ray
spectra have been obtained at various locations along the anomalous arms and
are well described by thermal (mekal) models with kT in the range 0.37 - 0.6
keV. The previously known kpc-scale radio jets are surrounded by cocoons of hot
X-ray emitting gas for the first 350 pc of their length. The radio jets, seen
in previous VLBA and VLA observations, propagate perpendicular to the compact
nuclear gas disk (imaged in water vapor maser emission). The angle between the
jets and the rotation axis of the galactic disk is 60. The jets shock
the normal interstellar gas along the first 350 pc of their length, causing the
hot, X-ray emitting cocoons noted above. At a height of z = 175 pc from the
disk plane, the jets exit the normal gas disk and then propagate though the low
density halo until they reach ``hot spots'' (at 870 pc and 1.7 kpc from the
nucleus), which are seen in radio, optical line and X-ray emission. These jets
must drive mass motions into the low density halo gas. This high velocity halo
gas impacts on the dense galactic gas disk and shock heats it along and around
a ``line of damage'', which is the projection of the jets onto the galactic gas
disk as viewed down the galaxy disk rotation axis. However, because NGC 4258 is
highly inclined ( = 64), the ``line of damage'' projects on the
sky in a different direction to the jets themselves. We calculate the expected
p.a. of the ``line of damage'' on the sky and find that it coincides with the
anomalous arms to within 2. (Abstract truncated).Comment: 12 pages plus 9 figures, to be published in the Astrophysical
Journal, v560, nr 1, pt 1 (Oct 10, 2001 issue
Coherent Umklapp Scattering of Light from Disordered Photonic Crystals
A theoretical study of the coherent light scattering from disordered photonic
crystal is presented. In addition to the conventional enhancement of the
reflected light intensity into the backscattering direction, the so called
coherent backscattering (CBS), the periodic modulation of the dielectric
function in photonic crystals gives rise to a qualitatively new effect:
enhancement of the reflected light intensity in directions different from the
backscattering direction. These additional coherent scattering processes,
dubbed here {\em umklapp scattering} (CUS), result in peaks, which are most
pronounced when the incident light beam enters the sample at an angle close to
the the Bragg angle. Assuming that the dielectric function modulation is weak,
we study the shape of the CUS peaks for different relative lengths of the
modulation-induced Bragg attenuation compared to disorder-induced mean free
path. We show that when the Bragg length increases, then the CBS peak assumes
its conventional shape, whereas the CUS peak rapidly diminishes in amplitude.
We also study the suppression of the CUS peak upon the departure of the
incident beam from Bragg resonance: we found that the diminishing of the CUS
intensity is accompanied by substantial broadening. In addition, the peak
becomes asymmetric.Comment: LaTeX, 8 two-column pages, 6 figures include
The scale-free character of the cluster mass function and the universality of the stellar IMF
Our recent determination of a Salpeter slope for the IMF in the field of 30
Doradus (Selman and Melnick 2005) appears to be in conflict with simple
probabilistic counting arguments advanced in the past to support observational
claims of a steeper IMF in the LMC field. In this paper we re-examine these
arguments and show by explicit construction that, contrary to these claims, the
field IMF is expected to be exactly the same as the stellar IMF of the clusters
out of which the field was presumably formed. We show that the current data on
the mass distribution of clusters themselves is in excellent agreement with our
model, and is consistent with a single spectrum {\it by number of stars} of the
type with beta between -1.8 and -2.2 down to the smallest clusters
without any preferred mass scale for cluster formation. We also use the random
sampling model to estimate the statistics of the maximal mass star in clusters,
and confirm the discrepancy with observations found by Weidner and Kroupa
(2006). We argue that rather than signaling the violation of the random
sampling model these observations reflect the gravitationally unstable nature
of systems with one very large mass star. We stress the importance of the
random sampling model as a \emph{null hypothesis} whose violation would signal
the presence of interesting physics.Comment: 9 pages emulateap
3D Radiative Hydrodynamics for Disk Stability Simulations: A Proposed Testing Standard and New Results
Recent three-dimensional radiative hydrodynamics simulations of
protoplanetary disks report disparate disk behaviors, and these differences
involve the importance of convection to disk cooling, the dependence of disk
cooling on metallicity, and the stability of disks against fragmentation and
clump formation. To guarantee trustworthy results, a radiative physics
algorithm must demonstrate the capability to handle both the high and low
optical depth regimes. We develop a test suite that can be used to demonstrate
an algorithm's ability to relax to known analytic flux and temperature
distributions, to follow a contracting slab, and to inhibit or permit
convection appropriately. We then show that the radiative algorithm employed by
Meji\'a (2004) and Boley et al. (2006) and the algorithm employed by Cai et al.
(2006) and Cai et al. (2007, in prep.) pass these tests with reasonable
accuracy. In addition, we discuss a new algorithm that couples flux-limited
diffusion with vertical rays, we apply the test suite, and we discuss the
results of evolving the Boley et al. (2006) disk with this new routine.
Although the outcome is significantly different in detail with the new
algorithm, we obtain the same qualitative answers. Our disk does not cool fast
due to convection, and it is stable to fragmentation. We find an effective
. In addition, transport is dominated by low-order
modes.Comment: Submitted to Ap
The internal structure and formation of early-type galaxies: the gravitational--lens system MG2016+112 at z=1.004
[Abridged] We combine our measurements of the velocity dispersion and the
surface brightness profile of the lens galaxy D in the system MG2016+112
(z=1.004) with constraints from gravitational lensing to study its internal
mass distribution. We find that: (i) dark matter accounts for >50% of the total
mass within the Einstein radius (99% CL), excluding at the 8-sigma level that
mass follows light inside the Einstein radius with a constant mass-to-light
ratio (M/L). (ii) the total mass distribution inside the Einstein radius is
well-described by a density profile ~r^-gamma' with an effective slope
gamma'=2.0+-0.1+-0.1, including random and systematic uncertainties. (iii) The
offset of galaxy D from the local Fundamental Plane independently constrains
the stellar M/L, and matches the range derived from our models, leading to a
more stringent lower limit of >60% on the fraction of dark matter within the
Einstein radius (99%CL).
Under the assumption of adiabatic contraction, the inner slope of the dark
matter halo before the baryons collapsed is gamma_i<1.4 (68 CL), marginally
consistent with the highest-resolution cold dark matter simulations that
indicate gamma_i~1.5. This might indicate that either adiabatic contraction is
a poor description of E/S0 formation or that additional processes play a role
as well. Indeed, the apparently isothermal density distribution inside the
Einstein radius, is not a natural outcome of adiabatic contraction models,
where it appears to be a mere coincidence. By contrast, we argue that
isothermality might be the result of a stronger coupling between luminous and
dark-matter, possibly the result of (incomplete) violent relaxation processes.
Hence, we conclude that galaxy D appears already relaxed 8 Gyr ago.Comment: 8 pages, 4 figures, ApJ, in press, minor change
Comment on Viscous Stability of Relativistic Keplerian Accretion Disks
Recently Ghosh (1998) reported a new regime of instability in Keplerian
accretion disks which is caused by relativistic effects. This instability
appears in the gas pressure dominated region when all relativistic corrections
to the disk structure equations are taken into account. We show that he uses
the stability criterion in completely wrong way leading to inappropriate
conclusions. We perform a standard stability analysis to show that no unstable
region can be found when the relativistic disk is gas pressure dominated.Comment: 9 pages, 4 figures, uses aasms4.sty, submitted for ApJ Letter
Bars and Dark Matter Halo Cores
Self-consistent bars that form in galaxies embedded within cuspy halos are
unable to flatten the cusp. Short bars form in models with quasi-flat rotation
curves. They lose angular momentum to the halo through dynamical friction, but
the continuous concentration of mass within the disk as the bar grows actually
compresses the halo further, overwhelming any density reduction due to the
modest angular momentum transfer to the halo. Thus the Weinberg-Katz proposed
solution to the non-existence of the predicted cuspy halos from CDM simulations
would seem to be unworkable. I also find that the concerns over the performance
of N-body codes raised by these authors do not apply to the methods used here.Comment: Latex 11 pages (uses emulateapj.sty), 8 figures, revised version to
appear ApJ, very minor change
Bar Diagnostics in Edge-On Spiral Galaxies. II. Hydrodynamical Simulations
We develop diagnostics based on gas kinematics to identify the presence of a
bar in an edge-on spiral galaxy and determine its orientation. We use
position-velocity diagrams (PVDs) obtained by projecting edge-on
two-dimensional hydrodynamical simulations of the gas flow in a barred galaxy
potential. We show that when a nuclear spiral is formed, the presence of a gap
in the PVDs, between the signature of the nuclear spiral and that of the outer
parts of the disk, reliably indicates the presence of a bar. This gap is due to
the presence of shocks and inflows in the simulations, leading to a depletion
of the gas in the outer bar region. If no nuclear spiral signature is present
in a PVD, only indirect arguments can be used to argue for the presence of a
bar. The shape of the signature of the nuclear spiral, and to a lesser extent
that of the outer bar region, allows to determine the orientation of the bar
with respect to the line-of-sight. The presence of dust can also help to
discriminate between viewing angles on either side of the bar. Simulations
covering a large fraction of parameter space constrain the bar properties and
mass distribution of observed galaxies. The strongest constraint comes from the
presence or absence of the signature of a nuclear spiral in the PVD.Comment: 25 pages (AASTeX, aaspp4.sty), 11 jpg figures. Accepted for
publication in The Astrophysical Journal. Online manuscript with PostScript
figures available at: http://www.strw.leidenuniv.nl/~bureau/pub_list.htm
- âŠ