85 research outputs found

    Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence

    Get PDF
    We present a series of models for the plasma properties along open magnetic flux tubes rooted in solar coronal holes, streamers, and active regions. These models represent the first self-consistent solutions that combine: (1) chromospheric heating driven by an empirically guided acoustic wave spectrum, (2) coronal heating from Alfven waves that have been partially reflected, then damped by anisotropic turbulent cascade, and (3) solar wind acceleration from gradients of gas pressure, acoustic wave pressure, and Alfven wave pressure. The only input parameters are the photospheric lower boundary conditions for the waves and the radial dependence of the background magnetic field along the flux tube. For a single choice for the photospheric wave properties, our models produce a realistic range of slow and fast solar wind conditions by varying only the coronal magnetic field. Specifically, a 2D model of coronal holes and streamers at solar minimum reproduces the latitudinal bifurcation of slow and fast streams seen by Ulysses. The radial gradient of the Alfven speed affects where the waves are reflected and damped, and thus whether energy is deposited below or above the Parker critical point. As predicted by earlier studies, a larger coronal ``expansion factor'' gives rise to a slower and denser wind, higher temperature at the coronal base, less intense Alfven waves at 1 AU, and correlative trends for commonly measured ratios of ion charge states and FIP-sensitive abundances that are in general agreement with observations. These models offer supporting evidence for the idea that coronal heating and solar wind acceleration (in open magnetic flux tubes) can occur as a result of wave dissipation and turbulent cascade. (abridged abstract)Comment: 32 pages (emulateapj style), 18 figures, ApJ Supplement, in press (v. 171, August 2007

    Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations

    Full text link

    Manuale di medicina nucleare

    No full text

    Guest Editorial

    No full text

    An empathetic AI coach for self-attachment therapy

    No full text
    In this work, we present a new dataset and a computational strategy for a digital coach that aims to guide users in practicing the protocols of self-attachment therapy. Our framework augments a rule-based conversational agent with a deep-learning classifier for identifying the underlying emotion in a user’s text response, as well as a deep-learning assisted retrieval method for producing novel, fluent and empathetic utterances. We also craft a set of human-like personas that users can choose to interact with. Our goal is to achieve a high level of engagement during virtual therapy sessions. We evaluate the effectiveness of our framework in a non-clinical trial with N=16 participants, all of whom have had at least four interactions with the agent over the course of five days. We find that our platform is consistently rated higher for empathy, user engagement and usefulness than the simple rule-based framework. Finally, we provide guidelines to further improve the design and performance of the application, in accordance with the feedback received

    A multilingual virtual guide for self-attachment technique

    No full text
    In this work, we propose a computational framework that leverages existing out-of-language data to create a conversational agent for the delivery of self-attachment technique in Mandarin. Our framework does not require large-scale human translations, yet it achieves a comparable performance whilst also maintaining safety and reliability. We propose two different methods of augmenting available response data through empathetic rewriting. We evaluate our chatbot against a previous, English-only SAT chatbot through non-clinical human trials (N=42), each lasting five days, and quantitatively show that we are able to attain a comparable level of performance to the English SAT chatbot. We provide qualitative analysis on the limitations of our study and suggestions with the aim of guiding future improvements

    Mode-coupling of low-frequency electromagnetic waves in dusty plasmas with temperature anisotropy

    No full text
    This paper studies the effects of the presence of dust particles with variable charge, in fully ionized, homogeneous, magnetized plasma of electrons and ions, with the electrons and ions described by bi-Maxwellian distributions in the equilibrium. The dispersion relation and the absorption rate are obtained for low frequency waves, with frequencies much lower than the ion cyclotron frequency. Two branches are obtained, identified as the whistler branch and the branch of circularly polarized waves, featuring damping due to the Landau damping process and to the collisional charging of the dust particles. The effects of the anisotropy of temperature on the damping rate of low frequency waves, and on the mode coupling which was demonstrated to occur in the isotropic situation, are numerically investigated. The results obtained show that in the anisotropic case the point of mode coupling is displaced to different values of dust density, and that a new point of mode coupling may appear from the effect of the temperature anisotropy
    • …
    corecore