2,925 research outputs found

    Berry's phase in noncommutative spaces

    Get PDF
    We introduce the perturbative aspects of noncommutative quantum mechanics. Then we study the Berry's phase in the framework of noncommutative quantum mechanics. The results show deviations from the usual quantum mechanics which depend on the parameter of space/space noncommtativity.Comment: 7 pages, no figur

    Direct CP violation in neutral kaon decays

    Full text link
    The final result is presented of the NA48 Experiment performed at CERN SPS neutral kaon beams on the direct CP violation parameter Re(epsilon'/epsilon), as maesured from the decay rates of neutral kaons into two pions. The data collected in years 1997-2001 yield the evidence for direct CP violation with Re(epsilon'/epsilon)=(14.7+-2.2)10^-4. Description of expermental method and systematics, comparison with world data and some discussion of implications for theory are given.Comment: 5 pp., 3 figs, presented on behalf of NA48 Collaboration at PASCOS 2003 Conference, Mumbai, India, 2-8 Jan 2003, to appear in Praman

    Semileptonic decays of baryons in a relativistic quark model

    Full text link
    We calculate semileptonic decays of light and heavy baryons in a relativistically covariant constituent quark model. The model is based on the Bethe-Salpeter-equation in instantaneous approximation. It generates satisfactory mass spectra for mesons and baryons up to the highest observable energies. Without introducing additional free parameters we compute on this basis helicity amplitudes of electronic and muonic semileptonic decays of baryons. We thus obtain form factor ratios and decay rates in good agreement with experiment.Comment: 8 pages, 10 figures, 2 tables, typos remove

    Convergence of many-body wavefunction expansions using a plane wave basis: from the homogeneous electron gas to the solid state

    Full text link
    Using the finite simulation-cell homogeneous electron gas (HEG) as a model, we investigate the convergence of the correlation energy to the complete basis set (CBS) limit in methods utilising plane-wave wavefunction expansions. Simple analytic and numerical results from second-order M{\o}ller-Plesset theory (MP2) suggest a 1/M decay of the basis-set incompleteness error where M is the number of plane waves used in the calculation, allowing for straightforward extrapolation to the CBS limit. As we shall show, the choice of basis set truncation when constructing many-electron wavefunctions is far from obvious, and here we propose several alternatives based on the momentum transfer vector, which greatly improve the rate of convergence. This is demonstrated for a variety of wavefunction methods, from MP2 to coupled-cluster doubles theory (CCD) and the random-phase approximation plus second-order screened exchange (RPA+SOSEX). Finite basis-set energies are presented for these methods and compared with exact benchmarks. A transformation can map the orbitals of a general solid state system onto the HEG plane wave basis and thereby allow application of these methods to more realistic physical problems.Comment: 15 pages, 9 figure

    The Noncommutative Anandan's Quantum Phase

    Get PDF
    In this work we study the noncommutative nonrelativistic quantum dynamics of a neutral particle, that possesses permanent magnetic and electric dipole momenta, in the presence of an electric and magnetic fields. We use the Foldy-Wouthuysen transformation of the Dirac spinor with a non-minimal coupling to obtain the nonrelativistic limit. In this limit, we will study the noncommutative quantum dynamics and obtain the noncommutative Anandan's geometric phase. We analyze the situation where magnetic dipole moment of the particle is zero and we obtain the noncommutative version of the He-McKellar-Wilkens effect. We demonstrate that this phase in the noncommutative case is a geometric dispersive phase. We also investigate this geometric phase considering the noncommutativity in the phase space and the Anandan's phase is obtained.Comment: 15 pages, revtex4, version to appear in Physical Review

    Randomly complete nn-partite graphs

    Get PDF

    Developments in Rare Kaon Decay Physics

    Get PDF
    We review the current status of the field of rare kaon decays. The study of rare kaon decays has played a key role in the development of the standard model, and the field continues to have significant impact. The two areas of greatest import are the search for physics beyond the standard model and the determination of fundamental standard-model parameters. Due to the exquisite sensitivity of rare kaon decay experiments, searches for new physics can probe very high mass scales. Studies of the k->pnn modes in particular, where the first event has recently been seen, will permit tests of the standard-model picture of quark mixing and CP violation.Comment: One major revision to the text is the branching ratio of KL->ppg, based on a new result from KTeV. Several references were updated, with minor modifications to the text. A total of 48 pages, with 28 figures, in LaTeX; to be published in the Annual Review of Nuclear and Particle Science, Vol. 50, December 200
    • …
    corecore