7 research outputs found

    A Contemporary Evaluation on Posterior Direct Restoration Teaching among Undergraduates in Dental Schools in Malaysia

    No full text
    There is a current trend to restore posterior teeth with composite resin due to increasing demands on natural tooth colour restoration and increased concern about the safety of amalgam restorations. The objective was to evaluate the current teaching of posterior direct restoration among restorative dental lecturers in Malaysia compared to available international literature. An online questionnaire, which sought information on the teaching of posterior restoration was developed and distributed to 13 dental schools in Malaysia. The response rate for the questionnaire was 53.8%. The most popular posterior restoration teaching methods among the respondents were lecture (95.7%), demonstration (87.0%) and problem-based learning (PBL) (73.9%), while continuous assessment and a practical competency test (82.6%) were the most popular assessment methods. Placing a hard setting calcium hydroxide and GIC base for deep cavity restored by composite restoration was taught in 79.2% of cases. The standard protocols for posterior composite restoration were incremental filling in deep cavity (87.5%), using circumferential metal bands with wooden wedge (91.7%), with a total etch system (95.8%), using a light emitting diode (LED) light curing unit (91.7%), finishing using water cooling (80%) and finishing with a disc (87.5%). Graduates from dental schools in Malaysia received similar theoretical, preclinical and clinical teaching on posterior restoration techniques, although there were variations in the delivery methods, techniques and assessments, pointing to a need for uniformity and consensus

    The Modern and Digital Transformation of Oral Health Care: A Mini Review

    No full text
    Dentistry is a part of the field of medicine which is advocated in this digital revolution. The increasing trend in dentistry digitalization has led to the advancement in computer-derived data processing and manufacturing. This progress has been exponentially supported by the Internet of medical things (IoMT), big data and analytical algorithm, internet and communication technologies (ICT) including digital social media, augmented and virtual reality (AR and VR), and artificial intelligence (AI). The interplay between these sophisticated digital aspects has dramatically changed the healthcare and biomedical sectors, especially for dentistry. This myriad of applications of technologies will not only be able to streamline oral health care, facilitate workflow, increase oral health at a fraction of the current conventional cost, relieve dentist and dental auxiliary staff from routine and laborious tasks, but also ignite participatory in personalized oral health care. This narrative article review highlights recent dentistry digitalization encompassing technological advancement, limitations, challenges, and conceptual theoretical modern approaches in oral health prevention and care, particularly in ensuring the quality, efficiency, and strategic dental care in the modern era of dentistry

    Barrier Membrane in Regenerative Therapy: A Narrative Review

    No full text
    Guided bone and tissue regeneration remains an integral treatment modality to regenerate bone surrounding teeth and dental implants. Barrier membranes have been developed and produced commercially to allow space for bone regeneration and prevent the migration of unwanted cells. Ideal membrane properties, including biocompatibility, sufficient structural integrity and suitable shelf life with easy clinical application, are important to ensure good clinical regenerative outcomes. Membranes have various types, and their clinical application depends on the origin, material, structure and properties. This narrative review aims to describe the currently available barrier membranes in terms of history, main features, types, indication and clinical application and classify them into various groups. Various membranes, including those which are resorbable and non-resorbable, synthetic, added with growth factors and composed of modern materials, such as high-grade polymer (Polyetheretherketone), are explored in this review

    The 3D Printability and Mechanical Properties of Polyhydroxybutyrate (PHB) as Additives in Urethane Dimethacrylate (UDMA) Blends Polymer for Medical Application

    No full text
    The integration of additive manufacturing (3D printing) in the biomedical sector required material to portray a holistic characteristic in terms of printability, biocompatibility, degradability, and mechanical properties. This research aims to evaluate the 3D printability and mechanical properties of polyhydroxybutyrate (PHB) as additives in the urethane dimethacrylate (UDMA) based resin and its potential for medical applications. The printability of the PHB/UDMA resin blends was limited to 11 wt.% as it reached the maximum viscosity value at 2188 cP. Two-way analysis of variance (ANOVA) was also conducted to assess the significant effect of the varied PHB (wt.%) incorporation within UDMA resin, and the aging duration of 3D printed PHB/UDMA on mechanical properties in terms of tensile and impact properties. Meanwhile, the increasing crystallinity index (CI) of X-ray diffraction (XRD) in the 3D printed PHB/UDMA as the PHB loading increased, indicating that there is a strong correlation with the lower tensile and impact strength. FESEM images also proved that the agglomerations that occurred within the UDMA matrix had affected the mechanical performance of 3D printed PHB/UDMA. Nonetheless, the thermal stability of the 3D printed PHB/UDMA had only a slight deviation from the 3D printed UDMA since it had better thermal processability

    Modification of Polymer Based Dentures on Biological Properties: Current Update, Status, and Findings

    No full text
    Polymers remain an integral part of denture fabrication materials, specifically polymethylmetacrylate (PMMA). PMMA has been extensively used, particularly in construction as a denture base material. Nonetheless, various challenges, including microbial threats in the form of candidiasis occurrence, still remain a biological challenge to denture wearers. The present article comprehensively reviews the biomodifications introduced to denture components, in particular denture base material, to improve the overall biological properties, together with physical, mechanical, structural integrity, and optical properties. In addition, fundamental information specifically to PMMA as a conventional denture base material and the causative aetiological microbial agents for biological threat to dentures are explored

    Description of Poly(aryl-ether-ketone) Materials (PAEKs), Polyetheretherketone (PEEK) and Polyetherketoneketone (PEKK) for Application as a Dental Material: A Materials Science Review

    No full text
    Poly(aryl-ether-ketone) materials (PAEKs), a class of high-performance polymers comprised of polyetheretherketone (PEEK) and polyetherketoneketone (PEKK), have attracted interest in standard dental procedures due to their inherent characteristics in terms of mechanical and biological properties. Polyetheretherketone (PEEK) is a restorative dental material widely used for prosthetic frameworks due to its superior physical, mechanical, aesthetic, and handling features. Meanwhile, polyetherketoneketone (PEKK) is a semi-crystalline thermoplastic embraced in the additive manufacturing market. In the present review study, a new way to fabricate high-performance polymers, particularly PEEK and PEKK, is demonstrated using additive manufacturing digital dental technology, or 3-dimensional (3D) printing. The focus in this literature review will encompass an investigation of the chemical, mechanical, and biological properties of HPPs, particularly PEEK and PEKK, along with their application particularly in dentistry. High-performance polymers have gained popularity in denture prosthesis in advance dentistry due to their flexibility in terms of manufacturing and the growing interest in utilizing additive manufacturing in denture fabrication. Further, this review also explores the literature regarding the properties of high-performance polymers (HPP) compared to previous reported polymers in terms of the dental material along with the current advancement of the digital designing and manufacturing
    corecore