3 research outputs found
Additional file 1: Table S1. of Inequalities in pediatric avoidable hospitalizations between Aboriginal and non-Aboriginal children in Australia: a population data linkage study
(ICD-10-AM codes) and Table S2. (Potentially avoidable, ambulatory care sensitive and non-avoidable hospitalisation admission rates). Table S1. title “List of ICD-10-AM codes used to identify potentially avoidable, ambulatory care sensitive and non-avoidable hospitalisations (adapted from Andersen et al., 2012)”, and Table S2. title “Potentially avoidable, ambulatory care sensitive and non-avoidable hospitalisation admission rates (2000–2013) in a population cohort of Aboriginal and non-Aboriginal children born between July 2000 and December 2012 in New South Wales, Australia”. (DOCX 61 kb
Reducing bias in trials due to reactions to measurement: experts produced recommendations informed by evidence
Objective: This study (MEasurement Reactions In Trials) aimed to produce recommendations on how best to minimize bias from measurement reactivity (MR) in randomized controlled trials of interventions to improve health. Study design and setting: The MERIT study consisted of: (1) an updated systematic review that examined whether measuring participants had effects on participants’ health-related behaviors, relative to no-measurement controls, and three rapid reviews to identify: (i) existing guidance on MR; (ii) existing systematic reviews of studies that have quantified the effects of measurement on behavioral or affective outcomes; and (iii) studies that have investigated the effects of objective measurements of behavior on health-related behavior; (2) a Delphi study to identify the scope of the recommendations; and (3) an expert workshop in October 2018 to discuss potential recommendations in groups. Results: Fourteen recommendations were produced by the expert group to: (1) identify whether bias is likely to be a problem for a trial; (2) decide whether to collect data about whether bias is likely to be a problem; (3) design trials to minimize the likelihood of this bias. Conclusion: These recommendations raise awareness of how and where taking measurements can produce bias in trials, and are thus helpful for trial design
Occupation and risk of severe COVID-19: prospective cohort study of 120 075 UK Biobank participants
Objectives To investigate severe COVID-19 risk by occupational group.
Methods Baseline UK Biobank data (2006–10) for England were linked to SARS-CoV-2 test results from Public Health England (16 March to 26 July 2020). Included participants were employed or self-employed at baseline, alive and aged <65 years in 2020. Poisson regression models were adjusted sequentially for baseline demographic, socioeconomic, work-related, health, and lifestyle-related risk factors to assess risk ratios (RRs) for testing positive in hospital or death due to COVID-19 by three occupational classification schemes (including Standard Occupation Classification (SOC) 2000).
Results Of 120 075 participants, 271 had severe COVID-19. Relative to non-essential workers, healthcare workers (RR 7.43, 95% CI 5.52 to 10.00), social and education workers (RR 1.84, 95% CI 1.21 to 2.82) and other essential workers (RR 1.60, 95% CI 1.05 to 2.45) had a higher risk of severe COVID-19. Using more detailed groupings, medical support staff (RR 8.70, 95% CI 4.87 to 15.55), social care (RR 2.46, 95% CI 1.47 to 4.14) and transport workers (RR 2.20, 95% CI 1.21 to 4.00) had the highest risk within the broader groups. Compared with white non-essential workers, non-white non-essential workers had a higher risk (RR 3.27, 95% CI 1.90 to 5.62) and non-white essential workers had the highest risk (RR 8.34, 95% CI 5.17 to 13.47). Using SOC 2000 major groups, associate professional and technical occupations, personal service occupations and plant and machine operatives had a higher risk, compared with managers and senior officials.
Conclusions Essential workers have a higher risk of severe COVID-19. These findings underscore the need for national and organisational policies and practices that protect and support workers with an elevated risk of severe COVID-19