23 research outputs found
Electropolishing of polycrystalline YBa2Cu3O7-δ to meet the need for sharp needle geometry
An electropolishing method has been developed for preparing sharp needles from polycrystalline YBa2Cu3O7-δ by modifying a recipe for TEM specimen preparation. The method is characterized by a polishing temperature of below 0°C, a non-acidic electrolyt and an even removal of the constituent phases. An approach was employed of combining I-V measurements for polishing process and microscopical observation of surface morphology in finding optimum polishing conditions. TEM evidenced that no preferential attack appeared to grain boundaries. X-ray diffractometry and electron diffraction implied that no change in oxygen content occurred during electropolishing. The sharpness of the tip was examined by field-ion microscopy
Herstellung Von Feinkornigen Teilchen
The present invention relates to methods for producing very fine-grained particulate material. In particular, the\ud
present invention relates to method for producing oxide materials of very fine-grained particulate material
Studies of the phase evolution of YBCO materials with different additives
Y123 samples with varying amounts of added Y211, PtO 2 and CeO 2 have been melt processed and quenched from temperatures between 960°C and 1100°C. The microstructures of the quenched samples have been characterized using a combination of x-ray diffractometry, optical microscopy, scanning electron microscopy, microprobe analysis, energy-dispersive x-ray spectroscopy and wavelength-dispersive x-ray spectroscopy. The Ba-Cu-O-rich melt undergoes complex changes as a function of temperature and time. A region of stability of BaCuO 2 (BC1) and BaCu 2O 2 (BC2) exists below 1040°C in samples of Y123 + 20 mol% Y211. Ba 2Cu 3O 5 is stabilized by rapid quenching but appears to separate into BC1 and BC2 at lower quenching rates. PtO 2 and CeO 2 additions affect the distribution and volume fractions of the two Ba-Cu-oxide phases
Partial melt processing and electrical properties of Bi-Sr-Ca-Cu-o superconducting thick films on (100) MgO substrates
Superconducting thick films of Bi2Sr2CaCu2Oy (Bi-2212) on single-crystalline (100) MgO substrates have been prepared using a doctor-blade technique and a partial-melt process. It is found that the phase composition and the amount of Ag addition to the paste affect the structure and superconducting properties of the partially melted thick films. The optimum heat treatment schedule for obtaining high Jc has been determined for each paste. The heat treatment ensures attainment of high purity for the crystalline Bi-2212 phase and high orientation of Bi-2212 crystals, in which the c-axis is perpendicular to the substrate. The highest Tc, obtained by resistivity measurement, is 92.2 K. The best value for Jct (transport) of these thick films, measured at 77 K in self-field, is 8 × 10 3 Acm -2
Phase evolution of the quenched melt of YBa2Cu3O7-y with 20 mol% Y2BaCuO5 additions
Samples of YBa2Cu3O7-y + 20 mol% Y2BaCuO5 have been melt processed and quenched from temperatures ranging from 975 to 1100°C. The microstructure of the samples have been characterized via a combination of x-ray diffractometry, optical microscopy, scanning electron microscopy, energy dispersive x-ray spectrometry and wavelength dispersive x-ray spectrometry. BaCuO2 (BC1) and BaCu2O2 (BC2) crystallize from the melt of samples quenched from temperatures between 985 and 1100°C in air. The average yttrium content differs for BC1 and BC2, and it is 4.3 and 5.1 at.%, respectively. Holding times of 20 hours at temperatures above or equal to 1040°C give rise to a dendritic pattern of BC1 surrounded by BC2. The complex changes of the nature of the melt as a function of temperature and time are likely to play a significant role in the mechanism of melt texturing
Melt textured Y123 bulk and thick film
YBa2Cu3O7-δ - 25mol%Y2BaCuO5 bars and thick films have been melt textured using a stationary furnace with a temperature gradient of 3 or 6°C/cm. Samples are heated above the peritectic reaction temperature and quenched to just above the solidification temperature and then slowly cooled below the solidification temperature. All bar shaped samples consist of 2-5 mm grains though the grain orientations strongly depend on the heat treatment conditions. The bar shows the maximum Jc of above 3,000 A/cm2, whereas the maximum Jc of 200 A/cm2 and Tczero of 88K are obtained for the thick film on (100) LaAlO3 single crystal
Binder effect on microstructure and properties of YBa2Cu3O7-x extruded wires
YBa2Cu3O7-x wires have been extruded with 2 and 5 wt.% of hydroxy propyl methylcellulose (HPMC) as binder. Both sets of wires sintered below 930°C have equiaxed grains while the wires sintered above this temperature have elongated grains. In the temperature range which gives equiaxed grains, the wires extruded with 5 wt.% HPMC have higher grain size and density. Cracks along the grain boundaries are often observed in the wires having elongated grains. Critical current density, Jc, increases initially, reaches a peak and then decreases with the sintering temperature. The sintering temperature giving a peak in Jc strongly depends on the heat treatment scheme for the wires extruded with 5 wt.% HPMC. TEM studies show that defective layers are formed along grain boundaries for the wires extruded with 5 wt.% HPMC after 5 h oxygenation. After 55 h oxygenation, the defective layers become more localised and grain boundaries adopt an overall cleaner appearance. Densification with equiaxed grains and clean grain boundaries produces the highest Jc's for polycrystalline YBa2Cu3O7 wires
Microstructural investigation of Bi-Sr-Ca-Cu-oxide thick films on alumina substrates
The microstructure of Bi-Sr-Ca-Cu-oxide (BSCCO) thick films on alumina substrates has been characterized using a combination of X-ray diffractometry, scanning electron microscopy, transmission electron microscopy of sections across the film/substrate interface and energy-dispersive X-ray spectrometry. A reaction layer formed between the BSCCO films and the alumina substrates. This chemical interaction is largely responsible for off-stoichiometry of the films and is more significant after partial melting of the films. A new phase with fee structure, lattice parameter a = 2.45 nm and approximate composition Al3Sr2CaBi2CuOx has been identified as reaction product between BSCCO and Al2O3
Yttrium barium copper oxide thin films on yttria-stabilized zirconia: growth and properties
Y Ba Cu oxide thin films were grown epitaxially on single cryst. yttria-stabilized zirconia substrates by laser deposition. [on SciFinder(R)