215 research outputs found

    Magnetic effects in a holographic Fermi-like liquid

    Full text link
    We explore the magnetic properties of the Fermi-like liquid represented by the D3-D7' system. The system exhibits interesting magnetic properties such as ferromagnetism and an anomalous Hall effect, which are due to the Chern-Simons term in the effective gravitational action. We investigate the spectrum of quasi-normal modes in the presence of a magnetic field and show that the magnetic field mitigates the instability towards a striped phase. In addition, we find a critical magnetic field above which the zero sound mode becomes massive.Comment: 18 pages, 15 figure

    Quantum Hall Effect in a Holographic Model

    Full text link
    We consider a holographic description of a system of strongly coupled fermions in 2+1 dimensions based on a D7-brane probe in the background of D3-branes, and construct stable embeddings by turning on worldvolume fluxes. We study the system at finite temperature and charge density, and in the presence of a background magnetic field. We show that Minkowski-like embeddings that terminate above the horizon describe a family of quantum Hall states with filling fractions that are parameterized by a single discrete parameter. The quantization of the Hall conductivity is a direct consequence of the topological quantization of the fluxes. When the magnetic field is varied relative to the charge density away from these discrete filling fractions, the embeddings deform continuously into black-hole-like embeddings that enter the horizon and that describe metallic states. We also study the thermodynamics of this system and show that there is a first order phase transition at a critical temperature from the quantum Hall state to the metallic state.Comment: v2: 27 pages, 12 figures. There is a major revision in the quantitative analysis. The qualitative results and conclusions are unchanged, with one exception: we show that the quantum Hall state embeddings, which exist for discrete values of the filling fraction, deform continuously into metallic state embeddings away from these filling fraction

    Fluctuations of a holographic quantum Hall fluid

    Full text link
    We analyze the neutral spectrum of the holographic quantum Hall fluid described by the D2-D8' model. As expected for a quantum Hall state, we find the system to be stable and gapped and that, at least over much of the parameter space, the lowest excitation mode is a magneto-roton. In addition, we find magneto-rotons in higher modes as well. We show that these magneto-rotons are direct consequences of level crossings between vector and scalar modes.Comment: 20 pages, 8 figures; v.2 figures improved, 2 figures added, and text clarified particularly in Sec. 5, to appear in JHE

    Holographic Conformal Window - A Bottom Up Approach

    Full text link
    We propose a five-dimensional framework for modeling the background geometry associated to ordinary Yang-Mills (YM) as well as to nonsupersymmetric gauge theories possessing an infrared fixed point with fermions in various representations of the underlying gauge group. The model is based on the improved holographic approach, on the string theory side, and on the conjectured all-orders beta function for the gauge theory one. We first analyze the YM gauge theory. We then investigate the effects of adding flavors and show that, in the holographic description of the conformal window, the geometry becomes AdS when approaching the ultraviolet and the infrared regimes. As the number of flavors increases within the conformal window we observe that the geometry becomes more and more of AdS type over the entire energy range.Comment: 20 Pages, 3 Figures. v2: references adde

    Long-term effect of xylitol chewing gum on dental caries

    Full text link
    – About 85% ( n = 269) of the subjects who participated in the Ylivieska follow-up studies on the effect of xylitol chewing gum on dental caries during 1982–84 or 1982–85 were re-examined in 1987 for the analysis of possible long-term preventive effects. Further caries reduction was found 2 or 3 yr after the discontinuation of the use of xylitol. The effect was especially marked in girls; the reduction in caries increment in the post-use years was 60% for the 2-yr users, suggesting that more pronounced caries reduction was associated with the most regular use of xylitol. In teeth erupting during the first year of the use of xylitol gum the long-term preventive effect was greater than in other teeth. Several explanations are suggested: lasting effect of the microbiological changes in the mouth, bacterial colonization on newly erupted teeth by organisms other than S. mutatis , and/or thorough maturation of the teeth under favorable physico-chemical circumstances. The results suggest that the value of xylitol in caries prevention depends on the timing of the treatment in relation to the development of the dentitionPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75700/1/j.1600-0528.1989.tb00611.x.pd

    Striped instability of a holographic Fermi-like liquid

    Full text link
    We consider a holographic description of a system of strongly-coupled fermions in 2+1 dimensions based on a D7-brane probe in the background of D3-branes. The black hole embedding represents a Fermi-like liquid. We study the excitations of the Fermi liquid system. Above a critical density which depends on the temperature, the system becomes unstable towards an inhomogeneous modulated phase which is similar to a charge density and spin wave state. The essence of this instability can be effectively described by a Maxwell-axion theory with a background electric field. We also consider the fate of zero sound at non-zero temperature.Comment: 16 pages, 9 figures; v2: added discussion and one figure. Typos correcte

    Thermodynamics of deformed AdS5_5 model with a positive/negative quadratic correction in graviton-dilaton system

    Full text link
    By solving the Einstein equations of the graviton coupling with a real scalar dilaton field, we establish a general framework to self-consistently solve the geometric background with black-hole for any given phenomenological holographic models. In this framwork, we solve the black-hole background, the corresponding dilaon field and the dilaton potential for the deformed AdS5_5 model with a positive/negative quadratic correction. We systematically investigate the thermodynamical properties of the deformed AdS5_5 model with a positive and negative quadratic correction, respectively, and compare with lattice QCD on the results of the equation of state, the heavy quark potential, the Polyakov loop and the spatial Wilson loop. We find that the bulk thermodynamical properties are not sensitive to the sign of the quadratic correction, and the results of both deformed holographic QCD models agree well with lattice QCD result for pure SU(3) gauge theory. However, the results from loop operators favor a positive quadratic correction, which agree well with lattice QCD result. Especially, the result from the Polyakov loop excludes the model with a negative quadratic correction in the warp factor of AdS5{\rm AdS}_5.Comment: 26 figures,36 pages,V.3: an appendix,more equations and references added,figures corrected,published versio

    Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions II - The deconfined phase

    Get PDF
    We present a non-perturbative study of the equation of state in the deconfined phase of Yang-Mills theories in D=2+1 dimensions. We introduce a holographic model, based on the improved holographic QCD model, from which we derive a non-trivial relation between the order of the deconfinement phase transition and the behavior of the trace of the energy-momentum tensor as a function of the temperature T. We compare the theoretical predictions of this holographic model with a new set of high-precision numerical results from lattice simulations of SU(N) theories with N=2, 3, 4, 5 and 6 colors. The latter reveal that, similarly to the D=3+1 case, the bulk equilibrium thermodynamic quantities (pressure, trace of the energy-momentum tensor, energy density and entropy density) exhibit nearly perfect proportionality to the number of gluons, and can be successfully compared with the holographic predictions in a broad range of temperatures. Finally, we also show that, again similarly to the D=3+1 case, the trace of the energy-momentum tensor appears to be proportional to T^2 in a wide temperature range, starting from approximately 1.2 T_c, where T_c denotes the critical deconfinement temperature.Comment: 2+36 pages, 10 figures; v2: comments added, curves showing the holographic predictions included in the plots of the pressure and energy and entropy densities, typos corrected: version published in JHE

    On thermodynamics of N=6 superconformal Chern-Simons theory

    Full text link
    We study thermodynamics of N=6 superconformal Chern-Simons theory by computing quantum corrections to the free energy. We find that in weakly coupled ABJM theory on R(2) x S(1), the leading correction is non-analytic in the 't Hooft coupling lambda, and is approximately of order lambda^2 log(lambda)^3. The free energy is expressed in terms of the scalar thermal mass m, which is generated by screening effects. We show that this mass vanishes to 1-loop order. We then go on to 2-loop order where we find a finite and positive mass squared m^2. We discuss differences in the calculation between Coulomb and Lorentz gauge. Our results indicate that the free energy is a monotonic function in lambda which interpolates smoothly to the N^(3/2) behaviour at strong coupling.Comment: 29 pages. v2: references added. v3: minor changes, references added, published versio

    Holographic aspects of three dimensional QCD from string theory

    Full text link
    We study two aspects of 3D QCD with massless fermions in a holographic set-up from string theory, based on D3/D7 branes; parity anomaly and baryons as baby Skyrmions. We first give a novel account of parity anomaly of 3D QCD with odd number of flavors from the IR holographic viewpoint by observing a subtle point in D7 brane embeddings with a given fixed UV theory. We also discuss its UV origin in terms of weakly coupled D-brane pictures. We then focus on the parity-symmetric case of even number of N_F flavors, and study baryons in the holographic model. We identify the monopoles of U(N_F) gauge theory dynamically broken down to U(N_F/2)x U(N_F/2) in the holographic 4 dimensional bulk as a holographic counter-part of 3D baby-Skyrmions for baryons in large N limit, and work out some details how the mapping goes. In particular, we show that the correct baryon charges emerge from the Witten effect with a space-varying theta angle.Comment: 33 pages, 10 figures; v2: references added with comments, typos corrected; v3: more references added; v4: holographic baryon profile and the analysis of its baryon charge is significantly revised, correcting errors in the previous discussio
    • …
    corecore