101 research outputs found

    Erosion resistance of surface engineered 6000 series aluminium alloy

    Get PDF
    Aluminium and its alloys are widely used in a wide variety of applications. Aluminium’s main advantages include: lightness, high specific strength, high thermal and electrical conductivities, good formability, excellent machinability, diversity of aluminium alloys, extensive range of forming and processing options (e.g. rolling, extrusions, stampings, forgings and castings) and suitability for a diverse range of joining techniques, surface treatments and recyclability. A number of surface treatment technologies are available which produce thicker oxide coating layers that can be used to combat corrosion and wear of aluminium alloys under aggressive environments, such as in petroleum extraction environments. Coating processes for surface modification of aluminium alloys include plasma electrolytic oxidation, plasma-sprayed ceramic and hard anodising. In this article, erosive wear characteristics of coatings produced using the aforesaid three processes are compared with each other and benchmarked against the uncoated aluminium substrate. This article investigates the extent of erosion resistance, in particular impingement due to sand loading, of these coatings taking into consideration the effect of material properties such as adhesion, ductility and roughness

    Genome wide association mapping for arabinoxylan content in a collection of tetraploid wheats

    Get PDF
    BACKGROUND: Arabinoxylans (AXs) are major components of plant cell walls in bread wheat and are important in bread-making and starch extraction. Furthermore, arabinoxylans are components of soluble dietary fibre that has potential health-promoting effects in human nutrition. Despite their high value for human health, few studies have been carried out on the genetics of AX content in durum wheat. RESULTS: The genetic variability of AX content was investigated in a set of 104 tetraploid wheat genotypes and regions attributable to AX content were identified through a genome wide association study (GWAS). The amount of arabinoxylan, expressed as percentage (w/w) of the dry weight of the kernel, ranged from 1.8% to 5.5% with a mean value of 4.0%. The GWAS revealed a total of 37 significant marker-trait associations (MTA), identifying 19 quantitative trait loci (QTL) associated with AX content. The highest number of MTAs was identified on chromosome 5A (seven), where three QTL regions were associated with AX content, while the lowest number of MTAs was detected on chromosomes 2B and 4B, where only one MTA identified a single locus. Conservation of synteny between SNP marker sequences and the annotated genes and proteins in Brachypodium distachyon, Oryza sativa and Sorghum bicolor allowed the identification of nine QTL coincident with candidate genes. These included a glycosyl hydrolase GH35, which encodes Gal7 and a glucosyltransferase GT31 on chromosome 1A; a cluster of GT1 genes on chromosome 2B that includes TaUGT1 and cisZog1; a glycosyl hydrolase that encodes a CelC gene on chromosome 3A; Ugt12887 and TaUGT1genes on chromosome 5A; a (1,3)-β-D-glucan synthase (Gsl12 gene) and a glucosyl hydrolase (Cel8 gene) on chromosome 7A. CONCLUSIONS: This study identifies significant MTAs for the AX content in the grain of tetraploid wheat genotypes. We propose that these may be used for molecular breeding of durum wheat varieties with higher soluble fibre content.Ilaria Marcotuli, Kelly Houston, Robbie Waugh, Geoffrey B. Fincher, Rachel A. Burton, Antonio Blanco, Agata Gadalet

    The heart healthy lenoir project-an intervention to reduce disparities in hypertension control: study protocol

    Get PDF
    Background Racial disparities in blood pressure control are well established; however the impact of low health literacy (LHL) on blood pressure has garnered less attention. Office based interventions that are created with iterative patient, practice and community stakeholder input and are rolled out incrementally, may help address these disparities in hypertension control. This paper describes our study protocol. Methods/design Using a community based participatory research (CBPR) approach, we designed and implemented a cohort study that includes both a practice level and patient level intervention to enhance the care and support of patients with hypertension in primary care practices in a rural region of eastern North Carolina. The study is divided into a formative phase and an ongoing 2.5 year implementation phase. Our main care enhancement activities include the integration of a community health coach, using home blood pressure monitoring in clinical decision making, standardizing care delivery processes, and working to improve medication adherence. Main outcomes include overall blood pressure change, the differential change in blood pressure by race (African American vs. White) and health literacy level (low vs. higher health literacy). Discussion Using a community based participatory approach in primary care practice settings has helped to engage patients and practice staff and providers in the research effort and in making practice changes to support hypertension care. Practices have engaged at varying levels, but progress has been made in implementing and iteratively improving upon the interventions to date

    Fats and Factors: Lipid Profiles Associate with Personality Factors and Suicidal History in Bipolar Subjects

    Get PDF
    Polyunsaturated fatty acids (PUFA) have shown efficacy in the treatment of bipolar disorder, however their specific role in treating the illness is unclear. Serum PUFA and dietary intakes of PUFA associate with suicidal behavior in epidemiological studies. The objective of this study was to assess serum n-3 and n-6 PUFA levels in bipolar subjects and determine possible associations with suicidal risk, including suicidal history and relevant personality factors that have been associated with suicidality. We studied 27 bipolar subjects using the NEO-PI to assess the big five personality factors, structured interviews to verify diagnosis and assess suicidal history, and lipomics to quantify n-3 and n-6 PUFA in serum. We found positive associations between personality factors and ratios of n-3 PUFA, suggesting that conversion of short chain to long chain n-3s and the activity of enzymes in this pathway may associate with measures of personality. Thus, ratios of docosahexaenoic acid (DHA) to alpha linolenic acid (ALA) and the activity of fatty acid desaturase 2 (FADS2) involved in the conversion of ALA to DHA were positively associated with openness factor scores. Ratios of eicosapentaenoic acid (EPA) to ALA and ratios of EPA to DHA were positively associated with agreeableness factor scores. Finally, serum concentrations of the n-6, arachidonic acid (AA), were significantly lower in subjects with a history of suicide attempt compared to non-attempters. The data suggest that specific lipid profiles, which are controlled by an interaction between diet and genetics, correlate with suicidal history and personality factors related to suicidal risk. This study provides preliminary data for future studies to determine whether manipulation of PUFA profiles (through diet or supplementation) can affect personality measures and disease outcome in bipolar subjects and supports the need for further investigations into individualized specific modulations of lipid profiles to add adjunctive value to treatment paradigms

    Antibody Targeting of Cathepsin S Inhibits Angiogenesis and Synergistically Enhances Anti-VEGF

    Get PDF
    Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development. where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed.Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis

    Genetic Variants of the Renin Angiotensin System: Effects on Atherosclerosis in Experimental Models and Humans

    Get PDF
    The renin angiotensin system (RAS) has profound effects on atherosclerosis development in animal models, which is partially complimented by evidence in the human disease. Although angiotensin II was considered to be the principal effector of the RAS, a broader array of bioactive angiotensin peptides have been identified that have increased the scope of enzymes and receptors in the RAS. Genetic interruption of the synthesis of these peptides has not been extensively performed in experimental or human studies. A few studies demonstrate that interruption of a component of the angiotensin peptide synthesis pathway reduces experimental lesion formation. The evidence in human studies has not been consistent. Conversely, genetic manipulation of the RAS receptors has demonstrated that AT1a receptors are profoundly involved in experimental atherosclerosis. Few studies have reported links of genetic variants of angiotensin II receptors to human atherosclerotic diseases. Further genetic studies are needed to define the role of RAS in atherosclerosis

    Transgenic Overexpression of Active Calcineurin in β-Cells Results in Decreased β-Cell Mass and Hyperglycemia

    Get PDF
    BACKGROUND:Glucose modulates beta-cell mass and function through an initial depolarization and Ca(2+) influx, which then triggers a number of growth regulating signaling pathways. One of the most important downstream effectors in Ca(2+) signaling is the calcium/Calmodulin activated serine threonine phosphatase, calcineurin. Recent evidence suggests that calcineurin/NFAT is essential for beta-cell proliferation, and that in its absence loss of beta-cells results in diabetes. We hypothesized that in contrast, activation of calcineurin might result in expansion of beta-cell mass and resistance to diabetes. METHODOLOGY/PRINCIPAL FINDINGS:To determine the role of activation of calcineurin signaling in the regulation of pancreatic beta-cell mass and proliferation, we created mice that expressed a constitutively active form of calcineurin under the insulin gene promoter (caCn(RIP)). To our surprise, these mice exhibited glucose intolerance. In vitro studies demonstrated that while the second phase of Insulin secretion is enhanced, the overall insulin secretory response was conserved. Islet morphometric studies demonstrated decreased beta-cell mass suggesting that this was a major component responsible for altered Insulin secretion and glucose intolerance in caCn(RIP) mice. The reduced beta-cell mass was accompanied by decreased proliferation and enhanced apoptosis. CONCLUSIONS:Our studies identify calcineurin as an important factor in controlling glucose homeostasis and indicate that chronic depolarization leading to increased calcineurin activity may contribute, along with other genetic and environmental factors, to beta-cell dysfunction and diabetes

    Comparative Analyses of SUV420H1 Isoforms and SUV420H2 Reveal Differences in Their Cellular Localization and Effects on Myogenic Differentiation

    Get PDF
    Methylation of histone H4 on lysine 20 plays critical roles in chromatin structure and function via mono- (H4K20me1), di- (H4K20me2), and trimethyl (H4K20me3) derivatives. In previous analyses of histone methylation dynamics in mid-gestation mouse embryos, we documented marked changes in H4K20 methylation during cell differentiation. These changes were particularly robust during myogenesis, both in vivo and in cell culture, where we observed a transition from H4K20me1 to H4K20me3. To assess the significance of this change, we used a gain-of-function strategy involving the lysine methyltransferases SUV420H1 and SUV420H2, which catalyze H4K20me2 and H4K20me3. At the same time, we characterized a second isoform of SUV420H1 (designated SUV420H1_i2) and compared the activity of all three SUV420H proteins with regard to localization and H4K20 methylation.Immunofluorescence revealed that exogenous SUV420H1_i2 was distributed throughout the cell, while a substantial portion of SUV420H1_i1 and SUV420H2 displayed the expected association with constitutive heterochromatin. Moreover, SUV420H1_i2 distribution was unaffected by co-expression of heterochromatin protein-1α, which increased the targeting of SUV420H1_i1 and SUV420H2 to regions of pericentromeric heterochromatin. Consistent with their distributions, SUV420H1_i2 caused an increase in H4K20me3 levels throughout the nucleus, whereas SUV420H1_i1 and SUV420H2 facilitated an increase in pericentric H4K20me3. Striking differences continued when the SUV420H proteins were tested in the C2C12 myogenic model system. Specifically, although SUV420H1_i2 induced precocious appearance of the differentiation marker Myogenin in the presence of mitogens, only SUV420H2 maintained a Myogenin-enriched population over the course of differentiation. Paradoxically, SUV420H1_i1 could not be expressed in C2C12 cells, which suggests it is under post-transcriptional or post-translational control.These data indicate that SUV420H proteins differ substantially in their localization and activity. Importantly, SUV420H2 can induce a transition from H4K20me1 to H4K20me3 in regions of constitutive heterochromatin that is sufficient to enhance myogenic differentiation, suggesting it can act an as epigenetic ‘switch’ in this process

    CNS Penetration of Intrathecal-Lumbar Idursulfase in the Monkey, Dog and Mouse: Implications for Neurological Outcomes of Lysosomal Storage Disorder

    Get PDF
    A major challenge for the treatment of many central nervous system (CNS) disorders is the lack of convenient and effective methods for delivering biological agents to the brain. Mucopolysaccharidosis II (Hunter syndrome) is a rare inherited lysosomal storage disorder resulting from a deficiency of iduronate-2-sulfatase (I2S). I2S is a large, highly glycosylated enzyme. Intravenous administration is not likely to be an effective therapy for disease-related neurological outcomes that require enzyme access to the brain cells, in particular neurons and oligodendrocytes. We demonstrate that intracerebroventricular and lumbar intrathecal administration of recombinant I2S in dogs and nonhuman primates resulted in widespread enzyme distribution in the brain parenchyma, including remarkable deposition in the lysosomes of both neurons and oligodendrocytes. Lumbar intrathecal administration also resulted in enzyme delivery to the spinal cord, whereas little enzyme was detected there after intraventricular administration. Mucopolysaccharidosis II model is available in mice. Lumbar administration of recombinant I2S to enzyme deficient animals reduced the storage of glycosaminoglycans in both superficial and deep brain tissues, with concurrent morphological improvements. The observed patterns of enzyme transport from cerebrospinal fluid to the CNS tissues and the resultant biological activity (a) warrant further investigation of intrathecal delivery of I2S via lumbar catheter as an experimental treatment for the neurological symptoms of Hunter syndrome and (b) may have broader implications for CNS treatment with biopharmaceuticals

    The Overlapping Community Structure of Structural Brain Network in Young Healthy Individuals

    Get PDF
    Community structure is a universal and significant feature of many complex networks in biology, society, and economics. Community structure has also been revealed in human brain structural and functional networks in previous studies. However, communities overlap and share many edges and nodes. Uncovering the overlapping community structure of complex networks remains largely unknown in human brain networks. Here, using regional gray matter volume, we investigated the structural brain network among 90 brain regions (according to a predefined anatomical atlas) in 462 young, healthy individuals. Overlapped nodes between communities were defined by assuming that nodes (brain regions) can belong to more than one community. We demonstrated that 90 brain regions were organized into 5 overlapping communities associated with several well-known brain systems, such as the auditory/language, visuospatial, emotion, decision-making, social, control of action, memory/learning, and visual systems. The overlapped nodes were mostly involved in an inferior-posterior pattern and were primarily related to auditory and visual perception. The overlapped nodes were mainly attributed to brain regions with higher node degrees and nodal efficiency and played a pivotal role in the flow of informa- tion through the structural brain network. Our results revealed fuzzy boundaries between communities by identifying overlapped nodes and provided new insights into the understanding of the relationship between the structure and function of the human brain. This study provides the first report of the overlapping community structure of the structural network of the human brain
    • …
    corecore