15 research outputs found

    Anomalous Fermion Production in Gravitational Collapse

    Full text link
    The Dirac equation is solved in the Einstein-Yang-Mills background found by Bartnik and McKinnon. We find a normalizable zero-energy fermion mode in the ss-wave sector. As shown recently, their solution corresponds to a gravitational sphaleron which mediates transitions between topologically distinct vacua. Since the Bartnik-McKinnon solution is unstable, it will either collapse to form a black hole or radiate away its energy. In either case, as the Chern-Simons number of the configuration changes, there will be an accompanying anomalous change in fermion number.Comment: 12 pages, preprint DAMTP93/R1

    Supergeometry of Three Dimensional Black Holes

    Get PDF
    We show how the supersymmetric properties of three dimensional black holes can be obtained algebraically. The black hole solutions are constructed as quotients of the supergroup OSp(12;R)OSp(1|\,2;R) by a discrete subgroup of its isometry supergroup. The generators of the action of the isometry supergroup which commute with these identifications are found. These yield the supersymmetries for the black hole as found in recent studies as well as the usual geometric isometries. It is also shown that in the limit of vanishing cosmological constant, the black hole vacuum becomes a null orbifold, a solution previously discussed in the context of string theory.Comment: 12 pages, harvmac, discussion of rotating black hole added, some minor corrections, reference adde

    Time-Symmetric Initial Data for Multi-Body Solutions in Three Dimensions

    Get PDF
    Time-symmetric initial data for two-body solutions in three dimensional anti-deSitter gravity are found. The spatial geometry has constant negative curvature and is constructed as a quotient of two-dimensional hyperbolic space. Apparent horizons correspond to closed geodesics. In an open universe, it is shown that two black holes cannot exist separately, but are necessarily enclosed by a third horizon. In a closed universe, two separate black holes can exist provided there is an additional image mass.Comment: 12 pages, harvmac macro, minor changes in wordin

    Yang-Mills Cosmologies and Collapsing Gravitational Sphalerons

    Full text link
    Cosmological solutions with a homogeneous Yang-Mills field which oscillates and passes between topologically distinct vacua are discussed. These solutions are used to model the collapsing Bartnik-McKinnon gravitational sphaleron and the associated anomalous production of fermions. The Dirac equation is analyzed in these backgrounds. It is shown explicitly that a fermion energy level crosses from the negative to positive energy spectrum as the gauge field evolves between the topologically distinct vacua. The cosmological solutions are also generalized to include an axion field.Comment: 12 pages, harvmac, DAMTP93/R3

    Ultra--Planck Scattering in D=3 Gravity Theories

    Get PDF
    We obtain the high energy, small angle, 2-particle gravitational scattering amplitudes in topologically massive gravity (TMG) and its two non-dynamical constituents, Einstein and Chern--Simons gravity. We use 't Hooft's approach, formally equivalent to a leading order eikonal approximation: one of the particles is taken to scatter through the classical spacetime generated by the other, which is idealized to be lightlike. The required geometries are derived in all three models; in particular, we thereby provide the first explicit asymptotically flat solution generated by a localized source in TMG. In contrast to DD=4, the metrics are not uniquely specified, at least by naive asymptotic requirements -- an indeterminacy mirrored in the scattering amplitudes. The eikonal approach does provide a unique choice, however. We also discuss the discontinuities that arise upon taking the limits, at the level of the solutions, from TMG to its constituents, and compare with the analogous topologically massive vector gauge field models.Comment: 20 pages, preprint BRX TH--337, DAMTP R93/5, ADP-93-204/M1

    An Equivalence Between Momentum and Charge in String Theory

    Full text link
    It is shown that for a translationally invariant solution to string theory, spacetime duality interchanges the momentum in the symmetry direction and the axion charge per unit length. As one application, we show explicitly that charged black strings are equivalent to boosted (uncharged) black strings. The extremal black strings (which correspond to the field outside of a fundamental macroscopic string) are equivalent to plane fronted waves describing strings moving at the speed of light.Comment: 10 page
    corecore