2,345 research outputs found

    Phylogenetic Relationships of Malvatheca (Bombacoideae and Malvoideae; Malvaceae sensu lato) as Inferred from Plastid DNA Sequences

    Get PDF
    Previous molecular phylogenetic analyses have revealed that elements of the former families Malvaceae sensu stricto and Bombacaceae together form a well-supported clade that has been named Malvatheca. Within Malvatheca, two major lineages have been observed; one, Bombacoideae, corresponds approximately to the palmate-leaved Bombacaceae, and the other, Malvoideae, includes the traditional Malvaceae (the mallows or Eumalvoideae). However, the composition of these two groups and their relationships to other elements of Malvatheca remain a source of uncertainty. Sequence data from two plastid regions, ndhF and trnK/matK, from 34 exemplars of Malvatheca and six outgroups were analyzed. Parsimony, likelihood, and Bayesian analyses of the sequence data provided a well-resolved phylogeny except that relationships among five lineages at the base of Malvatheca are poorly resolved. Nonetheless, a 6-bp insertion in matK suggests that Fremontodendreae is sister to the remainder of Malvatheca. Our results suggest that the Malvoideae originated in the Neotropics and that a mangrove taxon dispersed across the Pacific from South America to Australasia and later radiated out of Australasia to give rise to the ca. 1,700 living species of Eumalvoideae. Local clock analyses imply that the plastid genome underwent accelerated molecular evolution coincident with the dispersal out of the Americas and again with the radiation into the three major clades of Eumalvoideae

    Digital Signal Processing

    Get PDF
    Contains summary of research and reports on sixteen research projects.U.S. Navy - Office of Naval Research (Contract N00014-75-C-0852)National Science Foundation FellowshipNATO FellowshipU.S. Navy - Office of Naval Research (Contract N00014-75-C-0951)National Science Foundation (Grant ECS79-15226)U.S. Navy - Office of Naval Research (Contract N00014-77-C-0257)Bell LaboratoriesNational Science Foundation (Grant ECS80-07102)Schlumberger-Doll Research Center FellowshipHertz Foundation FellowshipGovernment of Pakistan ScholarshipU.S. Navy - Office of Naval Research (Contract N00014-77-C-0196)U.S. Air Force (Contract F19628-81-C-0002)Hughes Aircraft Company Fellowshi

    JAK2/IDH-mutant–driven myeloproliferative neoplasm is sensitive to combined targeted inhibition

    Get PDF
    Patients with myeloproliferative neoplasms (MPNs) frequently progress to bone marrow failure or acute myeloid leukemia (AML), and mutations in epigenetic regulators such as the metabolic enzyme isocitrate dehydrogenase (IDH) are associated with poor outcomes. Here, we showed that combined expression of Jak2V617Fand mutant IDH1R132Hor Idh2R140Q induces MPN progression, alters stem/progenitor cell function, and impairs differentiation in mice. Jak2V617FIdh2R140Q–mutant MPNs were sensitive to small-molecule inhibition of IDH. Combined inhibition of JAK2 and IDH2 normalized the stem and progenitor cell compartments in the murine model and reduced disease burden to a greater extent than was seen with JAK inhibition alone. In addition, combined JAK2 and IDH2 inhibitor treatment also reversed aberrant gene expression in MPN stem cells and reversed the metabolite perturbations induced by concurrent JAK2 and IDH2 mutations. Combined JAK2 and IDH2 inhibitor therapy also showed cooperative efficacy in cells from MPN patients with both JAK2mutand IDH2mutmutations. Taken together, these data suggest that combined JAK and IDH inhibition May offer a therapeutic advantage in this high-risk MPN subtype.Damon Runyon Cancer Research Foundation (DRG-2241-15)Howard Hughes Medical Institute (Faculty Scholars Award)Stand Up To CancerNational Cancer Institute (U.S.) (P50CA165962)National Cancer Institute (U.S.) (P30CA14051)Koch Institute for Integrative Cancer Research ( Dana-Farber Harvard Cancer Center Bridge Project)Leukemia & Lymphoma Society of America. Specialized Center of Research (SCOR) ProgramNational Institutes of Health (U.S.) (grant U54OD020355-01)National Institutes of Health (U.S.) (grant NCI R01CA172636)National Institutes of Health (U.S.) (grant R35CA197594)National Cancer Institute (U.S.) (Cancer Center Support Grant (P30 CA008747)

    CLASS: The Cosmology Large Angular Scale Surveyor

    Get PDF
    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Submicron Structures Technology and Research

    Get PDF
    Contains reports on ten research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)Joint Services Electronics Program (Contract DAAL03-86-K-0002)National Science Foundation (Grant ECS82-05701)National Science Foundation (Grant ECS85-06565)Lawrence Livermore Laboratory (Subcontract 2069209)National Science Foundation (Grant ECS85-03443)U.S. Air Force - Office of Scientific Research (Grant AFOSR-85-0154)National Aeronautics and Space Administration (Grant NGL22-009-638)National Science Foundation (through KMS Fusion, Inc.)U.S. Navy - Office of Naval Research (Contract N00014-79-C-0908

    Sleep is required to consolidate odor memory and remodel olfactory synapses

    Get PDF
    Animals with complex nervous systems demand sleep for memory consolidation and synaptic remodeling. Here, we show that, although the Caenorhabditis elegans nervous system has a limited number of neurons, sleep is necessary for both processes. In addition, it is unclear if, in any system, sleep collaborates with experience to alter synapses between specific neurons and whether this ultimately affects behavior. C. elegans neurons have defined connections and well-described contributions to behavior. We show that spaced odor-training and post-training sleep induce long-term memory. Memory consolidation, but not acquisition, requires a pair of interneurons, the AIYs, which play a role in odor-seeking behavior. In worms that consolidate memory, both sleep and odor conditioning are required to diminish inhibitory synaptic connections between the AWC chemosensory neurons and the AIYs. Thus, we demonstrate in a living organism that sleep is required for events immediately after training that drive memory consolidation and alter synaptic structures

    Structural and functional annotation of the porcine immunome

    Get PDF
    Background: The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems.[br/] Results: The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated evolution as compared to 4.1% across the entire genome.[br/] Conclusions: This extensive annotation dramatically extends the genome-based knowledge of the molecular genetics and structure of a major portion of the porcine immunome. Our complementary functional approach using co-expression during immune response has provided new putative immune response annotation for over 500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in this set of genes, and that, as in other species, such genes are important components of the pig’s adaptation to pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the porcine genome sequence and provide important tools for global analyses and data-mining of the porcine immune response
    • …
    corecore