8 research outputs found

    Ciclagem de carbono e nitrogênio em sistema integrado de produção de soja e bovinos de corte sob diferentes intensidades de pastejo

    Get PDF
    The objective of this work was to evaluate the effect of grazing intensity on the decomposition of cover crop pasture, dung, and soybean residues, as well as the C and N release rates from these residues in a long‑term integrated soybean‑beef cattle system under no‑tillage. The experiment was initiated in 2001, with soybean cultivated in summer and black oat + Italian ryegrass in winter. The treatments consisted of four sward heights (10, 20, 30, and 40 cm), plus an ungrazed area, as the control. In 2009–2011, residues from pasture, dung, and soybean stems and leaves were placed in nylon‑mesh litter bags and allowed to decompose for up to 258 days. With increasing grazing intensity, residual dry matter of the pasture decreased and that of dung increased. Pasture and dung lignin concentrations and C release rates were lower with moderate grazing intensity. C and N release rates from soybean residues are not affected by grazing intensity. The moderate grazing intensity produces higher quality residues, both for pasture and dung. Total C and N release is influenced by the greater residual dry matter produced when pastures were either lightly grazed or ungrazed.O objetivo deste trabalho foi avaliar o efeito da intensidade de pastejo na decomposição dos resíduos da pastagem utilizada como cultura de cobertura, do esterco e da soja, bem como a liberação de C e N desses resíduos, em um sistema integrado de produção de soja e bovinos de corte, em plantio direto e em longo‑prazo. O experimento foi iniciado em 2001, com soja cultivada no verão e aveia‑preta + azevém no inverno. Os tratamentos consistiram de quatro alturas de pasto (10, 20, 30 e 40 cm), além de uma área sem pastejo, como controle. Em 2009–2011, resíduos da pastagem, do esterco, e do caule e das folhas de soja foram alocados em sacos de decomposição feitos com malha de nylon e decompostos até 258 dias. Com o aumento da intensidade de pastejo, a matéria seca residual da pastagem diminuiu e a do esterco aumentou. A concentração de lignina e as taxas de liberação de C da pastagem e do esterco foram menores com a intensidade de pastejo moderada. A liberação de C e N do resíduo de soja não é afetada pela intensidade de pastejo. A intensidade moderada de pastejo produz resíduos de maior qualidade, tanto para a pastagem quanto para o esterco. Já a quantidade total de C e N liberada é influenciada pela maior quantidade de matéria seca residual produzida quando a pastagem foi submetida ao pastejo leve ou não foi pastejada

    Not Available

    No full text
    Not AvailableSoil degradation in India is estimated to be occurring on 147 million hectares (Mha) of land, including 94 Mha from water erosion, 16 Mha from acidification, 14 Mha from flooding, 9 Mha from wind erosion, 6 Mha from salinity, and 7 Mha from a combination of factors. This is extremely serious because India supports 18% of the world’s human population and 15% of the world’s livestock population, but has only 2.4% of the world’s land area. Despite its low proportional land area, India ranks second worldwide in farm output. Agriculture, forestry, and fisheries account for 17% of the gross domestic product and employs about 50% of the total workforce of the country. Causes of soil degradation are both natural and human-induced. Natural causes include earthquakes, tsunamis, droughts, avalanches, landslides, volcanic eruptions, floods, tornadoes, and wildfires. Human-induced soil degradation results from land clearing and deforestation, inappropriate agricultural practices, improper management of industrial effluents and wastes, over-grazing, careless management of forests, surface mining, urban sprawl, and commercial/industrial development. Inappropriate agricultural practices include excessive tillage and use of heavy machinery, excessive and unbalanced use of inorganic fertilizers, poor irrigation and water management techniques, pesticide overuse, inadequate crop residue and/or organic carbon inputs, and poor crop cycle planning. Some underlying social causes of soil degradation in India are land shortage, decline in per capita land availability, economic pressure on land, land tenancy, poverty, and population increase. In this review of land degradation in India, we summarize (1) the main causes of soil degradation in different agro-climatic regions; (2) research results documenting both soil degradation and soil health improvement in various agricultural systems; and (3) potential solutions to improve soil health in different regions using a variety of conservation agricultural approaches.Not Availabl

    Not Available

    No full text
    Not AvailableSoil degradation in India is estimated to be occurring on 147 million hectares (Mha) of land, including 94 Mha from water erosion, 16 Mha from acidification, 14 Mha from flooding, 9 Mha from wind erosion, 6 Mha from salinity, and 7 Mha from a combination of factors. This is extremely serious because India supports 18% of theworld’s human population and 15% of the world’s livestock population, but has only 2.4% of the world’s land area. Despite its low proportional land area, India ranks second worldwide in farm output. Agriculture, forestry, and fisheries account for 17% of the gross domestic product and employs about 50% of the total workforce of the country. Causes of soil degradation are both natural and human-induced. Natural causes include earthquakes, tsunamis, droughts, avalanches, landslides, volcanic eruptions, floods, tornadoes, and wildfires. Human-induced soil degradation results from land clearing and deforestation, inappropriate agricultural practices, improper management of industrial effluents and wastes, over-grazing, careless management of forests, surface mining, urban sprawl, and commercial/industrial development. Inappropriate agricultural practices include excessive tillage and use of heavy machinery, excessive and unbalanced use of inorganic fertilizers, poor irrigation and water management techniques, pesticide overuse, inadequate crop residue and/or organic carbon inputs, and poor crop cycle planning. Some underlying social causes of soil degradation in India are land shortage, decline in per capita land availability, econompressure on land, land tenancy, poverty, and population increase. In this review of land degradation in India, we summarize (1) the main causes of soil degradation in different agro-climatic regions; (2) research results documenting both soil degradation and soil health improvement in various agricultural systems; and (3) potential solutions to improvesoil health in different regions using a variety of conservation agricultural approaches.Not Availabl

    Not Available

    No full text
    Not AvailableSoil degradation in India is estimated to be occurring on 147 million hectares (Mha) of land, including 94 Mha from water erosion, 16 Mha from acidification, 14 Mha from flooding, 9 Mha from wind erosion, 6 Mha from salinity, and 7 Mha from a combination of factors. This is extremely serious because India supports 18% of theworld’s human population and 15% of the world’s livestock population, but has only 2.4% of the world’s land area. Despite its low proportional land area, India ranks second worldwide in farm output. Agriculture, forestry, and fisheries account for 17% of the gross domestic product and employs about 50% of the total workforce of the country. Causes of soil degradation are both natural and human-induced. Natural causes include earthquakes, tsunamis, droughts, avalanches, landslides, volcanic eruptions, floods, tornadoes, and wildfires. Human-induced soil degradation results from land clearing and deforestation, inappropriate agricultural practices, improper management of industrial effluents and wastes, over-grazing, careless management of forests, surface mining, urban sprawl, and commercial/industrial development. Inappropriate agricultural practices include excessive tillage and use of heavy machinery, excessive and unbalanced use of inorganic fertilizers, poor irrigation and water management techniques, pesticide overuse, inadequate crop residue and/or organic carbon inputs, and poor crop cycle planning. Some underlying social causes of soil degradation in India are land shortage, decline in per capita land availability, econompressure on land, land tenancy, poverty, and population increase. In this review of land degradation in India, we summarize (1) the main causes of soil degradation in different agro-climatic regions; (2) research results documenting both soil degradation and soil health improvement in various agricultural systems; and (3) potential solutions to improvesoil health in different regions using a variety of conservation agricultural approaches.Not Availabl

    Soil Degradation in India: Challenges and Potential Solutions

    No full text
    Soil degradation in India is estimated to be occurring on 147 million hectares (Mha) of land, including 94 Mha from water erosion, 16 Mha from acidification, 14 Mha from flooding, 9 Mha from wind erosion, 6 Mha from salinity, and 7 Mha from a combination of factors. This is extremely serious because India supports 18% of the world’s human population and 15% of the world’s livestock population, but has only 2.4% of the world’s land area. Despite its low proportional land area, India ranks second worldwide in farm output. Agriculture, forestry, and fisheries account for 17% of the gross domestic product and employs about 50% of the total workforce of the country. Causes of soil degradation are both natural and human-induced. Natural causes include earthquakes, tsunamis, droughts, avalanches, landslides, volcanic eruptions, floods, tornadoes, and wildfires. Human-induced soil degradation results from land clearing and deforestation, inappropriate agricultural practices, improper management of industrial effluents and wastes, over-grazing, careless management of forests, surface mining, urban sprawl, and commercial/industrial development. Inappropriate agricultural practices include excessive tillage and use of heavy machinery, excessive and unbalanced use of inorganic fertilizers, poor irrigation and water management techniques, pesticide overuse, inadequate crop residue and/or organic carbon inputs, and poor crop cycle planning. Some underlying social causes of soil degradation in India are land shortage, decline in per capita land availability, economic pressure on land, land tenancy, poverty, and population increase. In this review of land degradation in India, we summarize (1) the main causes of soil degradation in different agro-climatic regions; (2) research results documenting both soil degradation and soil health improvement in various agricultural systems; and (3) potential solutions to improve soil health in different regions using a variety of conservation agricultural approaches
    corecore