9 research outputs found

    Toward Empirical Constraints on the Global Redshifted 21 cm Brightness Temperature During the Epoch of Reionization

    Full text link
    Preliminary results are presented from a simple, single-antenna experiment designed to measure the all-sky radio spectrum between 100 and 200 MHz. The system used an internal comparison-switching scheme to reduce non-smooth instrumental contaminants in the measured spectrum to 75 mK. From the observations, we place an initial upper limit of 450 mK on the relative brightness temperature of the redshifted 21 cm contribution to the spectrum due to neutral hydrogen in the intergalactic medium (IGM) during the epoch of reionization, assuming a rapid transition to a fully ionized IGM at a redshift of 8. With refinement, this technique should be able to distinguish between slow and fast reionization scenarios. To constrain the duration of reionization to dz > 2, the systematic residuals in the measured spectrum must be reduced to 3 mK.Comment: Submitted to ApJ. 9 pages including 6 figure

    Multiwavelength Observations of the Second Largest Known FR II Radio Galaxy, NVSS 2146+82

    Get PDF
    We present multi-frequency VLA, multicolor CCD imaging, optical spectroscopy, and ROSAT HRI observations of the giant FR II radio galaxy NVSS 2146+82. This galaxy, which was discovered by the NRAO VLA Sky Survey (NVSS), has an angular extent of nearly 20' from lobe to lobe. The radio structure is normal for an FR II source except for its large size and regions in the lobes with unusually flat radio spectra. Our spectroscopy indicates that the optical counterpart of the radio core is at a redshift of z=0.145, so the linear size of the radio structure is ~4 h_50^-1 Mpc. This object is therefore the second largest FR II known (3C 236 is ~6 h_50^-1 Mpc). Optical imaging of the field surrounding the host galaxy reveals an excess number of candidate galaxy cluster members above the number typically found in the field surrounding a giant radio galaxy. WIYN HYDRA spectra of a sample of the candidate cluster members reveal that six share the same redshift as NVSS 2146+82, indicating the presence of at least a ``rich group'' containing the FR II host galaxy. ROSAT HRI observations of NVSS 2146+82 place upper limits on the X-ray flux of 1.33 x 10^-13 ergs cm^-2 s^-1 for any hot IGM and 3.52 x 10^-14 ergs cm^-2 s^-1 for an X-ray AGN, thereby limiting any X-ray emission at the distance of the radio galaxy to that typical of a poor group or weak AGN. Several other giant radio galaxies have been found in regions with overdensities of nearby galaxies, and a separate study has shown that groups containing FR IIs are underluminous in X-rays compared to groups without radio sources. We speculate that the presence of the host galaxy in an optically rich group of galaxies that is underluminous in X-rays may be related to the giant radio galaxy phenomenon.Comment: 46 pages, 15 figures, AASTeX aaspp4 style, accepted for publication in A

    The arrival directions of the most energetic cosmic rays

    Full text link
    In this Letter we examine the arrival directions of the most energetic cosmic rays (E > 2 * 10^19 eV) detected by several air shower experiments. We find that data taken by different air shower arrays show positive correlations, indicating a non--uniform arrival direction distribution. We also find that the events with energy $ > 4 * 10^19 eV exhibit a correlation with the general direction of the supergalactic plane, where a large number of potential sources is located. If confirmed by data from other experiments our results would support models for the extragalactic origin of the highest energy cosmic rays.Comment: 7 pages; 1 figure included; uuencoded, compressed PostScript file; final version, corrected in some points, accepted for publication in Phys.Rev.Let

    Constructing an engineering model for moisture migration in bulk solids as a prelude to predicting moisture migration caking

    No full text
    The aim of this study was to examine one of the mechanisms behind moisture migration caking, where liquid solution bridges form between particles in a bulk solid system because of an increase in local relative humidity, and then solidify as the local relative humidity drops - the effect being increased as more cycles occur. The goal was to develop a one-dimensional model for the heat and mass transfer processes involved, based on established physics and the characteristic moisture sorption curve of the solid (in this case sugar). The model was verified using scaled-down equipment (a caking box) to simulate the caking in a big bag. The results of this study will assist in the prediction of caking produced in this way

    Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma

    No full text
    Multiple intravenous injections of a cDNA library, derived from human melanoma cell lines and expressed using the highly immunogenic vector vesicular stomatitis virus (VSV), cured mice with established melanoma tumors. Successful tumor eradication was associated with the ability of mouse lymphoid cells to mount a tumor-specific CD4(+) interleukin (IL)-17 recall response in vitro. We used this characteristic IL-17 response to screen the VSV-cDNA library and identified three different VSV-cDNA virus clones that, when used in combination but not alone, achieved the same efficacy against tumors as the complete parental virus library. VSV-expressed cDNA libraries can therefore be used to identify tumor rejection antigens that can cooperate to induce anti-tumor responses. This technology should be applicable to antigen discovery for other cancers, as well as for other diseases in which immune reactivity against more than one target antigen contributes to disease pathology

    Mechanisms of Mammalian Iron Homeostasis

    No full text

    Small Vessel Disease and Memory Loss: What the Clinician Needs to Know to Preserve Patients’ Brain Health

    No full text
    corecore